Analysis of the Structural, Chemical, and Mechanical Characteristics of Polyurethane Foam Infused with Waste from Thermal Processing.

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Materials Pub Date : 2025-03-17 DOI:10.3390/ma18061327
Anna Magiera, Monika Kuźnia, Wojciech Jerzak
{"title":"Analysis of the Structural, Chemical, and Mechanical Characteristics of Polyurethane Foam Infused with Waste from Thermal Processing.","authors":"Anna Magiera, Monika Kuźnia, Wojciech Jerzak","doi":"10.3390/ma18061327","DOIUrl":null,"url":null,"abstract":"<p><p>The continuous generation of agricultural, industrial, and urban waste necessitates effective waste management strategies. One promising approach is incorporating these residues as fillers in polymer composites. This study investigated the influence of coal processing-derived fillers, specifically microspheres and fluidized-bed combustion fly ash, on the structure and properties of composite rigid polyurethane foam. Polyurethane foams were produced through manual mixing and casting, with composite foams containing a combination of 5% microspheres and 5-15% fly ash by weight. The analysis of the samples investigated their structural, thermal, and mechanical properties. The samples consistently displayed predominantly pentagonal, regularly shaped cells. Infrared spectroscopy revealed no observable chemical bonding between the matrix and filler materials. Mechanical analysis was performed to evaluate the materials' characteristics, revealing significant variations in compressive strength and Young's modulus values. The results indicate that the addition of fillers did not impact the cellular and chemical composition of the polyurethane matrix. Furthermore, the composite material specimens were subjected to accelerated aging in a laboratory dryer and outdoor exposure in order to assess their thermal stability. This analysis revealed notable alterations in both the cellular composition and mechanical properties of the composite foam materials.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 6","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944080/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18061327","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The continuous generation of agricultural, industrial, and urban waste necessitates effective waste management strategies. One promising approach is incorporating these residues as fillers in polymer composites. This study investigated the influence of coal processing-derived fillers, specifically microspheres and fluidized-bed combustion fly ash, on the structure and properties of composite rigid polyurethane foam. Polyurethane foams were produced through manual mixing and casting, with composite foams containing a combination of 5% microspheres and 5-15% fly ash by weight. The analysis of the samples investigated their structural, thermal, and mechanical properties. The samples consistently displayed predominantly pentagonal, regularly shaped cells. Infrared spectroscopy revealed no observable chemical bonding between the matrix and filler materials. Mechanical analysis was performed to evaluate the materials' characteristics, revealing significant variations in compressive strength and Young's modulus values. The results indicate that the addition of fillers did not impact the cellular and chemical composition of the polyurethane matrix. Furthermore, the composite material specimens were subjected to accelerated aging in a laboratory dryer and outdoor exposure in order to assess their thermal stability. This analysis revealed notable alterations in both the cellular composition and mechanical properties of the composite foam materials.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信