Yongxin Niu, Lingze Bu, Shi Yan, Songming Cai, Zixiang Meng
{"title":"Analysis of Residual Compressive Strength in 3D Four-Directional Braided Composites After Hygrothermal Aging.","authors":"Yongxin Niu, Lingze Bu, Shi Yan, Songming Cai, Zixiang Meng","doi":"10.3390/ma18061368","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the effect of hygrothermal environments on the compressive properties of three-dimensional four-directional braided composites through experiments and finite element simulations, revealing the degradation behavior under various hygrothermal conditions. The results indicate that the moisture absorption behavior of the material conforms to Fick's law. The longer the hygrothermal aging duration and the higher the temperature, the more significant the reduction in compressive performance, as evidenced by the continuous decline in ultimate stress. The hygrothermal environment primarily affects material performance through moisture absorption and thermal expansion characteristics of the epoxy resin, while the carbon fibers exhibit high stability in such conditions, maintaining the integrity of the three-dimensional four-directional structure. Microscopic observations reveal that hygrothermal aging exacerbates damage at the resin-fiber interface, leading to more pronounced stress concentration. Finite element simulations further quantify the internal stress distribution under hygrothermal conditions, demonstrating that moisture-induced expansion stress is more significant than thermal expansion stress, providing theoretical support and design guidance for improving the performance of composites in extreme environments.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 6","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943554/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18061368","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the effect of hygrothermal environments on the compressive properties of three-dimensional four-directional braided composites through experiments and finite element simulations, revealing the degradation behavior under various hygrothermal conditions. The results indicate that the moisture absorption behavior of the material conforms to Fick's law. The longer the hygrothermal aging duration and the higher the temperature, the more significant the reduction in compressive performance, as evidenced by the continuous decline in ultimate stress. The hygrothermal environment primarily affects material performance through moisture absorption and thermal expansion characteristics of the epoxy resin, while the carbon fibers exhibit high stability in such conditions, maintaining the integrity of the three-dimensional four-directional structure. Microscopic observations reveal that hygrothermal aging exacerbates damage at the resin-fiber interface, leading to more pronounced stress concentration. Finite element simulations further quantify the internal stress distribution under hygrothermal conditions, demonstrating that moisture-induced expansion stress is more significant than thermal expansion stress, providing theoretical support and design guidance for improving the performance of composites in extreme environments.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.