Eugenia Baena, Nuria Escribano, Victoria Fuentes, Isabel Reche, Laura Ceballos
{"title":"Aging Effect on Push-Out Bond Strength of Six Resin Cements: An In Vitro Study.","authors":"Eugenia Baena, Nuria Escribano, Victoria Fuentes, Isabel Reche, Laura Ceballos","doi":"10.3390/ma18061371","DOIUrl":null,"url":null,"abstract":"<p><p>The number of resin cements marketed for fiber post cementation has increased significantly. This study compared the push-out bond strength (PBS) of self-adhesive and universal resin cements used to lute fiber posts at 24 h and after 6 months of aging in artificial saliva. Fiber posts were luted to eighty human roots endodontically treated with four self-adhesive/one-step resin cements, with one of them also used in combination with its appropriate tooth primer; one universal resin cement, applied as one-step or together with its corresponding universal adhesive (multi-step); and one adhesive/multi-step resin cement, as a control. After storage (24 h or 6 months), the interfaces were subjected to PBS tests and the data were analyzed by two-way ANOVA and Tukey and Student's <i>t</i>-tests (<i>p</i> < 0.05 defined as statistical significance). The results showed that Scotchbond Universal Plus + RelyX Universal attained statistically higher values at 24 h and 6 months. At 24 h, all resin cements yielded similar PBS to root dentin, while at 6 months, NormoCem obtained the lowest PBS. Storage for 6 months significantly decreased PBS for NormoCem and Multilink Automix. Root section did not influence PBS regardless of storage time. It was concluded that PBS is resin cement dependent. The universal resin cement, RelyX Universal, applied in combination with Scotchbond Universal Plus adhesive, obtained a higher and more stable PBS than the other resin cements tested.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 6","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943558/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18061371","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The number of resin cements marketed for fiber post cementation has increased significantly. This study compared the push-out bond strength (PBS) of self-adhesive and universal resin cements used to lute fiber posts at 24 h and after 6 months of aging in artificial saliva. Fiber posts were luted to eighty human roots endodontically treated with four self-adhesive/one-step resin cements, with one of them also used in combination with its appropriate tooth primer; one universal resin cement, applied as one-step or together with its corresponding universal adhesive (multi-step); and one adhesive/multi-step resin cement, as a control. After storage (24 h or 6 months), the interfaces were subjected to PBS tests and the data were analyzed by two-way ANOVA and Tukey and Student's t-tests (p < 0.05 defined as statistical significance). The results showed that Scotchbond Universal Plus + RelyX Universal attained statistically higher values at 24 h and 6 months. At 24 h, all resin cements yielded similar PBS to root dentin, while at 6 months, NormoCem obtained the lowest PBS. Storage for 6 months significantly decreased PBS for NormoCem and Multilink Automix. Root section did not influence PBS regardless of storage time. It was concluded that PBS is resin cement dependent. The universal resin cement, RelyX Universal, applied in combination with Scotchbond Universal Plus adhesive, obtained a higher and more stable PBS than the other resin cements tested.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.