{"title":"A Novel Type II Photoinitiator with Self-Supplied Hydrogen for Anti-Creep Crosslinking Polyethylene Film.","authors":"Fei Yang, Zhaoyuan Jing, Yingqiu Wang, Guodong Jiang","doi":"10.3390/ma18061313","DOIUrl":null,"url":null,"abstract":"<p><p>Two macromolecular photoinitiators, bis(4-benzoylphenyl) malonate (BPMD) and bis(4-benzoylphenyl) 3,3'-(piperazine-1,4-diyl)bis(3-oxopropanoate) (DBPMD), were successfully synthesized from 4-hydroxybenzophenone (4-BP), malonyl chloride, and anhydrous piperazine. Structural characterization using Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance spectroscopy (<sup>1</sup>H NMR) confirmed the expected molecular framework. Ultraviolet (UV) absorption spectroscopy revealed that BPMD and DBPMD exhibited enhanced molar extinction coefficients and red-shifted absorption maxima compared to 4-BP. Migration studies in high-density polyethylene (HDPE) demonstrated significantly lower diffusion rates for BPMD and DBPMD than for 4-BP, with DBPMD exhibiting superior photoinitiation efficiency even in the absence of amine-based activators. Photoinitiation performance, photocrosslinking kinetics, and mechanical evaluations indicated that both BPMD and DBPMD enabled efficient UV-initiated crosslinking, leading to improved tensile strength and creep resistance in polyethylene films. These findings highlight the potential of BPMD and DBPMD as advanced photoinitiators for high-performance UV-crosslinked polyethylene systems.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 6","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943914/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18061313","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Two macromolecular photoinitiators, bis(4-benzoylphenyl) malonate (BPMD) and bis(4-benzoylphenyl) 3,3'-(piperazine-1,4-diyl)bis(3-oxopropanoate) (DBPMD), were successfully synthesized from 4-hydroxybenzophenone (4-BP), malonyl chloride, and anhydrous piperazine. Structural characterization using Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance spectroscopy (1H NMR) confirmed the expected molecular framework. Ultraviolet (UV) absorption spectroscopy revealed that BPMD and DBPMD exhibited enhanced molar extinction coefficients and red-shifted absorption maxima compared to 4-BP. Migration studies in high-density polyethylene (HDPE) demonstrated significantly lower diffusion rates for BPMD and DBPMD than for 4-BP, with DBPMD exhibiting superior photoinitiation efficiency even in the absence of amine-based activators. Photoinitiation performance, photocrosslinking kinetics, and mechanical evaluations indicated that both BPMD and DBPMD enabled efficient UV-initiated crosslinking, leading to improved tensile strength and creep resistance in polyethylene films. These findings highlight the potential of BPMD and DBPMD as advanced photoinitiators for high-performance UV-crosslinked polyethylene systems.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.