Arturo Ramos, Virginia G Angel, Miriam Siqueiros, Thaily Sahagun, Luis Gonzalez, Rogelio Ballesteros
{"title":"Reviewing Additive Manufacturing Techniques: Material Trends and Weight Optimization Possibilities Through Innovative Printing Patterns.","authors":"Arturo Ramos, Virginia G Angel, Miriam Siqueiros, Thaily Sahagun, Luis Gonzalez, Rogelio Ballesteros","doi":"10.3390/ma18061377","DOIUrl":null,"url":null,"abstract":"<p><p>Additive manufacturing is transforming modern industries by enabling the production of lightweight, complex structures while minimizing material waste and energy consumption. This review explores its evolution, covering historical developments, key technologies, and emerging trends. It highlights advancements in material innovations, including metals, polymers, composites, and ceramics, tailored to enhance mechanical properties and expand functional applications. Special emphasis is given to bioinspired designs and their contribution to enhancing structural efficiency. Additionally, the potential of these techniques for sustainable manufacturing and industrial scalability is discussed. The findings contribute to a broader understanding of Additive Manufacturing's impact on design optimization and material performance, offering insights into future research and industrial applications.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 6","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943502/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18061377","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Additive manufacturing is transforming modern industries by enabling the production of lightweight, complex structures while minimizing material waste and energy consumption. This review explores its evolution, covering historical developments, key technologies, and emerging trends. It highlights advancements in material innovations, including metals, polymers, composites, and ceramics, tailored to enhance mechanical properties and expand functional applications. Special emphasis is given to bioinspired designs and their contribution to enhancing structural efficiency. Additionally, the potential of these techniques for sustainable manufacturing and industrial scalability is discussed. The findings contribute to a broader understanding of Additive Manufacturing's impact on design optimization and material performance, offering insights into future research and industrial applications.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.