Applying Acoustic Signals to Monitor Hybrid Electrical Discharge-Turning with Artificial Neural Networks.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-02-27 DOI:10.3390/mi16030274
Mehdi Soleymani, Mohammadjafar Hadad
{"title":"Applying Acoustic Signals to Monitor Hybrid Electrical Discharge-Turning with Artificial Neural Networks.","authors":"Mehdi Soleymani, Mohammadjafar Hadad","doi":"10.3390/mi16030274","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) models have demonstrated their capabilities across various fields by performing tasks that are currently handled by humans. However, the training of these models faces several limitations, such as the need for sufficient data. This study proposes the use of acoustic signals as training data as this method offers a simpler way to obtain a large dataset compared to traditional approaches. Acoustic signals contain valuable information about the process behavior. We investigated the ability of extracting useful features from acoustic data expecting to predict labels separately by a multilabel classifier rather than as a multiclass classifier. This study focuses on electrical discharge turning (EDT) as a hybrid process of electrical discharge machining (EDM) and turning, an intricate process with multiple influencing parameters. The sounds generated during EDT were recorded and used as training data. The sounds underwent preprocessing to examine the effects of the parameters used for feature extraction prior to feeding the data into the ANN model. The parameters investigated included sample rate, length of the FFT window, hop length, and the number of mel-frequency cepstral coefficients (MFCC). The study aimed to determine the optimal preprocessing parameters considering the highest precision, recall, and F1 scores. The results revealed that instead of using the default set values in the python packages, it is necessary to investigate the preprocessing parameters to find the optimal values for the maximum classification performance. The promising results of the multi-label classification model depicted that it is possible to detect various aspects of a process simultaneously receiving single data, which is very beneficial in monitoring. The results also indicated that the highest prediction scores could be achieved by setting the sample rate, length of the FFT window, hop length, and number of MFCC to 4500 Hz, 1024, 256, and 80, respectively.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944751/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16030274","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI) models have demonstrated their capabilities across various fields by performing tasks that are currently handled by humans. However, the training of these models faces several limitations, such as the need for sufficient data. This study proposes the use of acoustic signals as training data as this method offers a simpler way to obtain a large dataset compared to traditional approaches. Acoustic signals contain valuable information about the process behavior. We investigated the ability of extracting useful features from acoustic data expecting to predict labels separately by a multilabel classifier rather than as a multiclass classifier. This study focuses on electrical discharge turning (EDT) as a hybrid process of electrical discharge machining (EDM) and turning, an intricate process with multiple influencing parameters. The sounds generated during EDT were recorded and used as training data. The sounds underwent preprocessing to examine the effects of the parameters used for feature extraction prior to feeding the data into the ANN model. The parameters investigated included sample rate, length of the FFT window, hop length, and the number of mel-frequency cepstral coefficients (MFCC). The study aimed to determine the optimal preprocessing parameters considering the highest precision, recall, and F1 scores. The results revealed that instead of using the default set values in the python packages, it is necessary to investigate the preprocessing parameters to find the optimal values for the maximum classification performance. The promising results of the multi-label classification model depicted that it is possible to detect various aspects of a process simultaneously receiving single data, which is very beneficial in monitoring. The results also indicated that the highest prediction scores could be achieved by setting the sample rate, length of the FFT window, hop length, and number of MFCC to 4500 Hz, 1024, 256, and 80, respectively.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信