{"title":"A Study on the Impact of Vanadium Doping on the Structural, Optical, and Optoelectrical Properties of ZnS Thin Films for Optoelectronic Applications.","authors":"H Y S Al-Zahrani, I M El Radaf, A Lahmar","doi":"10.3390/mi16030337","DOIUrl":null,"url":null,"abstract":"<p><p>This study details the manufacture of vanadium-doped ZnS thin films via a cost-effective spray pyrolysis technique at varying concentrations of vanadium (4, 8, and 12 wt.%). The XRD data demonstrate the hexagonal structure of the vanadium-doped ZnS layers. The analysis of their structural properties indicates that the crystallite size (D) of the vanadium-doped ZnS films decreased as the vanadium concentration rose. The strain and dislocation density of the analyzed films were enhanced by increasing the vanadium content from 4 to 12 wt.%. The linear optical results of the vanadium-doped ZnS films revealed that the refractive index values were improved from 2.31 to 3.49 by increasing the vanadium concentration in the analyzed samples. Further, the rise in vanadium content enhanced the absorption coefficient. The energy gap (Eg) study indicates that the vanadium-doped ZnS films exhibited direct optical transitions, with the Eg values diminishing from 3.74 to 3.15 eV as the vanadium concentration increased. The optoelectrical analysis shows that the rise in vanadium concentration increases the dispersion energy from 9.48 to 12.76 eV and reduces the oscillator energy from 3.69 to 2.17 eV. The optical carrier concentration of these layers was improved from 1.49 × 1053 to 2.15 × 1053, while the plasma frequency was decreased from 4.34 × 1013 to 3.67 × 1013 by boosting the vanadium concentration from 4 to 12 wt.%. Simultaneously, the increase in vanadium content improves the nonlinear optical parameters of the vanadium-doped ZnS films. The hot probe method identifies these samples as n-type semiconductors. The findings suggest that these samples serve as an innovative window layer.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944833/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16030337","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study details the manufacture of vanadium-doped ZnS thin films via a cost-effective spray pyrolysis technique at varying concentrations of vanadium (4, 8, and 12 wt.%). The XRD data demonstrate the hexagonal structure of the vanadium-doped ZnS layers. The analysis of their structural properties indicates that the crystallite size (D) of the vanadium-doped ZnS films decreased as the vanadium concentration rose. The strain and dislocation density of the analyzed films were enhanced by increasing the vanadium content from 4 to 12 wt.%. The linear optical results of the vanadium-doped ZnS films revealed that the refractive index values were improved from 2.31 to 3.49 by increasing the vanadium concentration in the analyzed samples. Further, the rise in vanadium content enhanced the absorption coefficient. The energy gap (Eg) study indicates that the vanadium-doped ZnS films exhibited direct optical transitions, with the Eg values diminishing from 3.74 to 3.15 eV as the vanadium concentration increased. The optoelectrical analysis shows that the rise in vanadium concentration increases the dispersion energy from 9.48 to 12.76 eV and reduces the oscillator energy from 3.69 to 2.17 eV. The optical carrier concentration of these layers was improved from 1.49 × 1053 to 2.15 × 1053, while the plasma frequency was decreased from 4.34 × 1013 to 3.67 × 1013 by boosting the vanadium concentration from 4 to 12 wt.%. Simultaneously, the increase in vanadium content improves the nonlinear optical parameters of the vanadium-doped ZnS films. The hot probe method identifies these samples as n-type semiconductors. The findings suggest that these samples serve as an innovative window layer.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.