{"title":"Cannabidiol-Based Thiosemicarbazones: A Preliminary Study Evaluating Their Anti-Tyrosinase Properties.","authors":"Eliav Peretz, Noa Ashkenazi, Sanaa Musa","doi":"10.3390/molecules30061291","DOIUrl":null,"url":null,"abstract":"<p><p>Cannabidiol (CBD), a non-psychoactive cannabinoid, has attracted significant research interest due to its antioxidant, anti-inflammatory, and neuroprotective properties. As a versatile scaffold in drug discovery, CBD has been widely explored for developing novel therapeutics. In this study, we synthesized and evaluated the anti-tyrosinase activity of CBD-based thiosemicarbazones. Structure-activity relationship (SAR) analyses were conducted to assess the impact of various functional groups on tyrosinase inhibition, including an evaluation of inhibitory kinetics for selected compounds. The synthesized derivatives demonstrated potent tyrosinase inhibition, with activity comparable to kojic acid, a standard tyrosinase inhibitor. Given the crucial role of tyrosinase in melanin biosynthesis, these findings suggest that CBD-based thiosemicarbazones could serve as promising candidates for managing tyrosinase-related disorders, including hyperpigmentation and melanogenesis-related conditions. Moreover, the presence of thiosemicarbazone moieties may contribute to the observed inhibitory effects, potentially through metal chelation at the enzyme's active site. This study provides valuable insights into the design of CBD-derived inhibitors targeting tyrosinase. Further optimization and in-depth biological evaluation are warranted to explore their full therapeutic potential.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 6","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944387/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30061291","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cannabidiol (CBD), a non-psychoactive cannabinoid, has attracted significant research interest due to its antioxidant, anti-inflammatory, and neuroprotective properties. As a versatile scaffold in drug discovery, CBD has been widely explored for developing novel therapeutics. In this study, we synthesized and evaluated the anti-tyrosinase activity of CBD-based thiosemicarbazones. Structure-activity relationship (SAR) analyses were conducted to assess the impact of various functional groups on tyrosinase inhibition, including an evaluation of inhibitory kinetics for selected compounds. The synthesized derivatives demonstrated potent tyrosinase inhibition, with activity comparable to kojic acid, a standard tyrosinase inhibitor. Given the crucial role of tyrosinase in melanin biosynthesis, these findings suggest that CBD-based thiosemicarbazones could serve as promising candidates for managing tyrosinase-related disorders, including hyperpigmentation and melanogenesis-related conditions. Moreover, the presence of thiosemicarbazone moieties may contribute to the observed inhibitory effects, potentially through metal chelation at the enzyme's active site. This study provides valuable insights into the design of CBD-derived inhibitors targeting tyrosinase. Further optimization and in-depth biological evaluation are warranted to explore their full therapeutic potential.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.