{"title":"Insights into a Novel and Efficient Microbial Nest System for Treating Pig Farm Wastewater.","authors":"Lifei Chen, Lusheng Li, Guiying Wang, Meng Xu, Yizhen Xin, Hanhan Song, Jiale Liu, Jiani Fu, Qi Yang, Qile Tian, Yuxi Wang, Haoyang Sun, Jianqun Lin, Linxu Chen, Jiang Zhang, Jianqiang Lin","doi":"10.3390/microorganisms13030685","DOIUrl":null,"url":null,"abstract":"<p><p>A microbial nest system (MNS) represents a novel and efficient approach to treating solid-liquid mixtures from pig farming instead of the conventional method, which separates the solid and liquid at first using centrifugation before treating the solid and liquid. However, the key environmental factors influencing the efficiency of this system and the microbial structure are still not clear. This study aimed to elucidate the changes in an MNS considering physicochemical properties, spectral analysis, and correlations between microbial community structures and environmental factors during the treatment. The results showed that the MNS underwent three temperature stages during the treatment process of piggery slurry: a warming period, a high-temperature period, and a cooling period. In the high-temperature period, the most abundant bacterium was <i>Bacillus</i>, with a relative abundance of 22.16%, and <i>Chaetomium</i> dominated the fungal community with a relative abundance of 11.40%. Moreover, the moisture content, pH value, and electrical conductivity (EC) exhibited an increasing trend, whereas the carbon-to-nitrogen (C/N) ratio and the ratio of ammonia nitrogen to nitrate nitrogen (NH<sub>4</sub><sup>+</sup>-N/NO<sub>3</sub><sup>-</sup>-N) showed a decreasing trend. The accumulation of humic acid and fulvic acid suggested that the humification process of organic matter was occurring. The moisture content and C/N ratio were identified as crucial factors influencing the bacterial and fungal community structures, respectively. This study provides a theoretical basis for enhancing the efficiency of piggery slurry treatment using an MNS and rational optimisation of the associated processes.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"13 3","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946184/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms13030685","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A microbial nest system (MNS) represents a novel and efficient approach to treating solid-liquid mixtures from pig farming instead of the conventional method, which separates the solid and liquid at first using centrifugation before treating the solid and liquid. However, the key environmental factors influencing the efficiency of this system and the microbial structure are still not clear. This study aimed to elucidate the changes in an MNS considering physicochemical properties, spectral analysis, and correlations between microbial community structures and environmental factors during the treatment. The results showed that the MNS underwent three temperature stages during the treatment process of piggery slurry: a warming period, a high-temperature period, and a cooling period. In the high-temperature period, the most abundant bacterium was Bacillus, with a relative abundance of 22.16%, and Chaetomium dominated the fungal community with a relative abundance of 11.40%. Moreover, the moisture content, pH value, and electrical conductivity (EC) exhibited an increasing trend, whereas the carbon-to-nitrogen (C/N) ratio and the ratio of ammonia nitrogen to nitrate nitrogen (NH4+-N/NO3--N) showed a decreasing trend. The accumulation of humic acid and fulvic acid suggested that the humification process of organic matter was occurring. The moisture content and C/N ratio were identified as crucial factors influencing the bacterial and fungal community structures, respectively. This study provides a theoretical basis for enhancing the efficiency of piggery slurry treatment using an MNS and rational optimisation of the associated processes.
期刊介绍:
Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.