{"title":"In-Situ One-Step Hydrothermal Synthesis of LiTi<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>@rGO Anode for High Performance Lithium-Ion Batteries.","authors":"Otmane Zoubir, Abdelfettah Lallaoui, M'hamed Oubla, Alvaro Y Tesio, Alvaro Caballero, Zineb Edfouf","doi":"10.3390/ma18061329","DOIUrl":null,"url":null,"abstract":"<p><p>The sodium super ionic conductor (NASICON) structured LiTi<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> (LTP) has been developed as electrode material for Li-ion batteries (LIBs) with promising electrochemical performance, owing to its outstanding structural stability and rapid lithium-ion diffusion. Nevertheless, challenges still exist, especially the rapid capacity fading caused by the low electronic conductivity of LTP-NASICON material. Recently, the hydrothermal method has emerged as an important technique for the production of diverse nano-electrode materials due to its low preparation temperature, high phase purity, and well-controlled morphology and crystallinity. Herein, we report, for the first time at low-moderate temperatures, an advanced hydrothermal synthesis of LTP-coated reduced graphene oxide (LTP@rGO) particles that includes the growth of LTP particles while simultaneously coating them with rGO material. The LTP offers a discharge specific capacity of 84 mAh/g, while the LTP@rGO delivers a discharge capacity of 147 mAh/g, both with a coulombic efficiency of 99.5% after 100 cycles at a 1C rate.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 6","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943971/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18061329","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The sodium super ionic conductor (NASICON) structured LiTi2(PO4)3 (LTP) has been developed as electrode material for Li-ion batteries (LIBs) with promising electrochemical performance, owing to its outstanding structural stability and rapid lithium-ion diffusion. Nevertheless, challenges still exist, especially the rapid capacity fading caused by the low electronic conductivity of LTP-NASICON material. Recently, the hydrothermal method has emerged as an important technique for the production of diverse nano-electrode materials due to its low preparation temperature, high phase purity, and well-controlled morphology and crystallinity. Herein, we report, for the first time at low-moderate temperatures, an advanced hydrothermal synthesis of LTP-coated reduced graphene oxide (LTP@rGO) particles that includes the growth of LTP particles while simultaneously coating them with rGO material. The LTP offers a discharge specific capacity of 84 mAh/g, while the LTP@rGO delivers a discharge capacity of 147 mAh/g, both with a coulombic efficiency of 99.5% after 100 cycles at a 1C rate.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.