{"title":"The Dual Roles of STAT3 in Ferroptosis: Mechanism, Regulation and Therapeutic Potential.","authors":"Jinghui Xie, Dan Luo, Pengfei Xing, Weijun Ding","doi":"10.2147/JIR.S506964","DOIUrl":null,"url":null,"abstract":"<p><p>Ferroptosis, an iron-dependent programmed mechanism of cell death that is driven by lipid peroxidation, is an important pathogenic factor in oncological and non-oncological disorders. Dysregulation of iron and lipid metabolism profoundly influences disease progression through ferroptosis modulation. Signal transducer and activator of transcription 3 (STAT3), a transcriptional regulator, regulates ferroptosis by binding to promoters of key molecules such as solute carrier family 7 member 11 (SLC7A11), glutathione peroxidase 4 (GPX4), and ferritin heavy chain 1 (FTH1). In this review, we described the role of STAT3 in supporting tumors survival by suppressing ferroptosis in malignancies, and bidirectionally regulating ferroptosis in non-tumors to regulate the development of the disease. We also reported emerging therapeutic strategies that target STAT3-mediated ferroptosis, including natural phytochemicals, inhibitors, and nanotechnology-enabled drug delivery systems. These advancements deepen the mechanistic understanding of ferroptosis regulation, and provide new theoretical bases and strategies to treat ferroptosis-related diseases.</p>","PeriodicalId":16107,"journal":{"name":"Journal of Inflammation Research","volume":"18 ","pages":"4251-4266"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11938932/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inflammation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/JIR.S506964","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ferroptosis, an iron-dependent programmed mechanism of cell death that is driven by lipid peroxidation, is an important pathogenic factor in oncological and non-oncological disorders. Dysregulation of iron and lipid metabolism profoundly influences disease progression through ferroptosis modulation. Signal transducer and activator of transcription 3 (STAT3), a transcriptional regulator, regulates ferroptosis by binding to promoters of key molecules such as solute carrier family 7 member 11 (SLC7A11), glutathione peroxidase 4 (GPX4), and ferritin heavy chain 1 (FTH1). In this review, we described the role of STAT3 in supporting tumors survival by suppressing ferroptosis in malignancies, and bidirectionally regulating ferroptosis in non-tumors to regulate the development of the disease. We also reported emerging therapeutic strategies that target STAT3-mediated ferroptosis, including natural phytochemicals, inhibitors, and nanotechnology-enabled drug delivery systems. These advancements deepen the mechanistic understanding of ferroptosis regulation, and provide new theoretical bases and strategies to treat ferroptosis-related diseases.
期刊介绍:
An international, peer-reviewed, open access, online journal that welcomes laboratory and clinical findings on the molecular basis, cell biology and pharmacology of inflammation.