Identification and Validation of the Potential Key Biomarkers for Atopic Dermatitis Mitochondrion by Learning Algorithms.

IF 4.2 2区 医学 Q2 IMMUNOLOGY
Journal of Inflammation Research Pub Date : 2025-03-21 eCollection Date: 2025-01-01 DOI:10.2147/JIR.S507085
Junhao Xu, Xinyu Pan, Miao Zhang, Kairong Sun, Zihan Li, Juan Chen
{"title":"Identification and Validation of the Potential Key Biomarkers for Atopic Dermatitis Mitochondrion by Learning Algorithms.","authors":"Junhao Xu, Xinyu Pan, Miao Zhang, Kairong Sun, Zihan Li, Juan Chen","doi":"10.2147/JIR.S507085","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Atopic dermatitis (AD) is a common inflammatory skin condition characterized by erythema and pruritus. Its precise pathogenesis remains unclear, though factors such as genetic predisposition, autoantigen response, allergen exposure, infections, and skin barrier dysfunction are involved. Research suggests a correlation between AD and mitochondrial dysfunction, as well as oxidative stress in skin tissues.</p><p><strong>Methods: </strong> Skin sample datasets related to AD (GSE36842, GSE120721, GSE16161, and GSE121212) were retrieved from the GEO database. Differential gene analysis identified differentially expressed genes (DEGs) in AD. Three potential biomarkers-COX17, ACOX2, and ADH1B-were identified using LASSO and Support Vector Machine (SVM) algorithms. These biomarkers were validated through ROC curve analysis, nomogram modeling, calibration curves, and real-time PCR. Immune infiltration analysis assessed correlations of the biomarkers. Additionally, single-cell analysis of the GSE153760 dataset identified nine cell clusters and confirmed expression patterns of the three hub genes.</p><p><strong>Results: </strong>Differential analysis identified 150 upregulated and 367 downregulated genes. Enrichment analysis revealed significant pathways related to mitochondrial function, oxidative stress, and energy metabolism in skin samples from AD patients. Area under the curve (AUC) values for biomarkers COX17, ACOX2, and ADH1B were 1.000, 0.928, and 0.895, respectively, indicating strong predictive capacity. qPCR results showed COX17 was highly expressed in AD lesions, while ACOX2 and ADH1B were higher in normal skin, consistent with previous findings. Correlation analysis indicated ACOX2 and ADH1B were positively correlated with resting mast cells but negatively with activated T cells and NK cells, while COX17 showed a positive correlation with activated T cells and a negative correlation with resting mast cells.</p><p><strong>Conclusion: </strong>This study suggests that the hub genes COX17, ACOX2, and ADH1B may serve as potential biomarkers in the pathogenesis of AD. These findings could provide insights for the treatment and prognosis of AD and related inflammatory skin conditions.</p>","PeriodicalId":16107,"journal":{"name":"Journal of Inflammation Research","volume":"18 ","pages":"4291-4306"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937846/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inflammation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/JIR.S507085","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Atopic dermatitis (AD) is a common inflammatory skin condition characterized by erythema and pruritus. Its precise pathogenesis remains unclear, though factors such as genetic predisposition, autoantigen response, allergen exposure, infections, and skin barrier dysfunction are involved. Research suggests a correlation between AD and mitochondrial dysfunction, as well as oxidative stress in skin tissues.

Methods:  Skin sample datasets related to AD (GSE36842, GSE120721, GSE16161, and GSE121212) were retrieved from the GEO database. Differential gene analysis identified differentially expressed genes (DEGs) in AD. Three potential biomarkers-COX17, ACOX2, and ADH1B-were identified using LASSO and Support Vector Machine (SVM) algorithms. These biomarkers were validated through ROC curve analysis, nomogram modeling, calibration curves, and real-time PCR. Immune infiltration analysis assessed correlations of the biomarkers. Additionally, single-cell analysis of the GSE153760 dataset identified nine cell clusters and confirmed expression patterns of the three hub genes.

Results: Differential analysis identified 150 upregulated and 367 downregulated genes. Enrichment analysis revealed significant pathways related to mitochondrial function, oxidative stress, and energy metabolism in skin samples from AD patients. Area under the curve (AUC) values for biomarkers COX17, ACOX2, and ADH1B were 1.000, 0.928, and 0.895, respectively, indicating strong predictive capacity. qPCR results showed COX17 was highly expressed in AD lesions, while ACOX2 and ADH1B were higher in normal skin, consistent with previous findings. Correlation analysis indicated ACOX2 and ADH1B were positively correlated with resting mast cells but negatively with activated T cells and NK cells, while COX17 showed a positive correlation with activated T cells and a negative correlation with resting mast cells.

Conclusion: This study suggests that the hub genes COX17, ACOX2, and ADH1B may serve as potential biomarkers in the pathogenesis of AD. These findings could provide insights for the treatment and prognosis of AD and related inflammatory skin conditions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Inflammation Research
Journal of Inflammation Research Immunology and Microbiology-Immunology
CiteScore
6.10
自引率
2.20%
发文量
658
审稿时长
16 weeks
期刊介绍: An international, peer-reviewed, open access, online journal that welcomes laboratory and clinical findings on the molecular basis, cell biology and pharmacology of inflammation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信