Influence of Pozzolanic Additives on the Structure and Properties of Ultra-High-Performance Concrete.

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Materials Pub Date : 2025-03-16 DOI:10.3390/ma18061304
Jurgita Malaiškienė, Ronaldas Jakubovskis
{"title":"Influence of Pozzolanic Additives on the Structure and Properties of Ultra-High-Performance Concrete.","authors":"Jurgita Malaiškienė, Ronaldas Jakubovskis","doi":"10.3390/ma18061304","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this paper is to analyse the influence of the following different supplementary cementitious materials (SCMs): milled quartz sand, microsilica, waste metakaolin, milled window glass, and a binary additive made of one part waste metakaolin and one part microsilica, on the properties of ultra-high-performance concrete, and choose the best additive according to the physical, mechanical, and structural properties of concrete. In all mixes except the control mix, 10% of the cement was replaced with pozzolanic additives, and the changes in the physical, mechanical, and structural properties of the concrete were analysed (density, compressive strength, water absorption, capillary water absorption, degree of structural inhomogeneity, porosity, freeze-thaw resistance prediction coefficient Kf values); X-ray diffraction analysis (XRD) and scanning electron microscopy analysis (SEM) results were then interpreted. Concrete with microsilica and the binary additive (microsilica + metakaolin) was found to have the highest compressive strength, density, closed porosity, and structural homogeneity. Compared to the control sample, these compositions have 50% lower open porosity and 24% higher closed porosity, resulting from the effect of pozzolanic additives, with which the highest density and structural homogeneity was achieved due to the different particle sizes of the additives used.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 6","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943713/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18061304","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is to analyse the influence of the following different supplementary cementitious materials (SCMs): milled quartz sand, microsilica, waste metakaolin, milled window glass, and a binary additive made of one part waste metakaolin and one part microsilica, on the properties of ultra-high-performance concrete, and choose the best additive according to the physical, mechanical, and structural properties of concrete. In all mixes except the control mix, 10% of the cement was replaced with pozzolanic additives, and the changes in the physical, mechanical, and structural properties of the concrete were analysed (density, compressive strength, water absorption, capillary water absorption, degree of structural inhomogeneity, porosity, freeze-thaw resistance prediction coefficient Kf values); X-ray diffraction analysis (XRD) and scanning electron microscopy analysis (SEM) results were then interpreted. Concrete with microsilica and the binary additive (microsilica + metakaolin) was found to have the highest compressive strength, density, closed porosity, and structural homogeneity. Compared to the control sample, these compositions have 50% lower open porosity and 24% higher closed porosity, resulting from the effect of pozzolanic additives, with which the highest density and structural homogeneity was achieved due to the different particle sizes of the additives used.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信