Yuriy O Nosov, Anna A Kamenskikh, Anastasia P Bogdanova
{"title":"Description of the Lubricant Behavior Based on the Theory of Elasto-Viscoplastic.","authors":"Yuriy O Nosov, Anna A Kamenskikh, Anastasia P Bogdanova","doi":"10.3390/ma18061360","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of the work is to provide a mathematical description of the lubricant's behavior model used in sliding bearings of bridge structures. It was previously established that the Maxwell model does not correctly describe the lubricant's behavior in a wide range of temperatures and deformation rates. The lubricant model should take into account not only viscosity but also plasticity. The Anand model, which was adapted by introducing temperature dependencies for a number of material parameters, was chosen to describe the lubricant behavior. The functionality of the previously created procedure for identifying material properties was also expanded on the modified Anand model. This made it possible to obtain a lubricant mathematical model with an error of less than 5% in the operating temperature range from -40 to +80 °C. The study included a description of the behavior model for two lubricants: CIATIM-221 and CIATIM-221F. CIATIM-221F differs from CIATIM-221 by including superfine particles of polytetrafluoroethylene (PTFE) to improve properties. The study confirmed that the modified Anand model allows describing the material behavior more accurately than the Maxwell model. It was found that the samples behave as a solid over the entire temperature range (from -40 to +80 °C). A comparative analysis of the thermal behavior of CIATIM-221 and CIATIM-221F was performed.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 6","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943954/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18061360","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of the work is to provide a mathematical description of the lubricant's behavior model used in sliding bearings of bridge structures. It was previously established that the Maxwell model does not correctly describe the lubricant's behavior in a wide range of temperatures and deformation rates. The lubricant model should take into account not only viscosity but also plasticity. The Anand model, which was adapted by introducing temperature dependencies for a number of material parameters, was chosen to describe the lubricant behavior. The functionality of the previously created procedure for identifying material properties was also expanded on the modified Anand model. This made it possible to obtain a lubricant mathematical model with an error of less than 5% in the operating temperature range from -40 to +80 °C. The study included a description of the behavior model for two lubricants: CIATIM-221 and CIATIM-221F. CIATIM-221F differs from CIATIM-221 by including superfine particles of polytetrafluoroethylene (PTFE) to improve properties. The study confirmed that the modified Anand model allows describing the material behavior more accurately than the Maxwell model. It was found that the samples behave as a solid over the entire temperature range (from -40 to +80 °C). A comparative analysis of the thermal behavior of CIATIM-221 and CIATIM-221F was performed.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.