Influence of Optimization Algorithms and Computational Complexity on Concrete Compressive Strength Prediction Machine Learning Models for Concrete Mix Design.
{"title":"Influence of Optimization Algorithms and Computational Complexity on Concrete Compressive Strength Prediction Machine Learning Models for Concrete Mix Design.","authors":"Patryk Ziolkowski","doi":"10.3390/ma18061386","DOIUrl":null,"url":null,"abstract":"<p><p>The proper design of concrete mixtures is a critical task in concrete technology, where optimal strength, eco-friendliness, and production efficiency are increasingly demanded. While traditional analytical methods, such as the Three Equations Method, offer foundational approaches to mix design, they often fall short in handling the complexity of modern concrete technology. Machine learning-based models have demonstrated notable efficacy in predicting concrete compressive strength, addressing the limitations of conventional methods. This study builds on previous research by investigating not only the impact of computational complexity on the predictive performance of machine learning models but also the influence of different optimization algorithms. The study evaluates the effectiveness of three optimization techniques: the Quasi-Newton Method (QNM), the Adaptive Moment Estimation (ADAM) algorithm, and Stochastic Gradient Descent (SGD). A total of forty-five deep neural network models of varying computational complexity were trained and tested using a comprehensive database of concrete mix designs and their corresponding compressive strength test results. The findings reveal a significant interaction between optimization algorithms and model complexity in enhancing prediction accuracy. Models utilizing the QNM algorithm outperformed those using the ADAM and SGD in terms of error reduction (SSE, MSE, RMSE, NSE, and ME) and increased coefficient of determination (R<sup>2</sup>). These insights contribute to the development of more accurate and efficient AI-driven methods in concrete mix design, promoting the advancement of concrete technology and the potential for future research in this domain.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 6","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944114/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18061386","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The proper design of concrete mixtures is a critical task in concrete technology, where optimal strength, eco-friendliness, and production efficiency are increasingly demanded. While traditional analytical methods, such as the Three Equations Method, offer foundational approaches to mix design, they often fall short in handling the complexity of modern concrete technology. Machine learning-based models have demonstrated notable efficacy in predicting concrete compressive strength, addressing the limitations of conventional methods. This study builds on previous research by investigating not only the impact of computational complexity on the predictive performance of machine learning models but also the influence of different optimization algorithms. The study evaluates the effectiveness of three optimization techniques: the Quasi-Newton Method (QNM), the Adaptive Moment Estimation (ADAM) algorithm, and Stochastic Gradient Descent (SGD). A total of forty-five deep neural network models of varying computational complexity were trained and tested using a comprehensive database of concrete mix designs and their corresponding compressive strength test results. The findings reveal a significant interaction between optimization algorithms and model complexity in enhancing prediction accuracy. Models utilizing the QNM algorithm outperformed those using the ADAM and SGD in terms of error reduction (SSE, MSE, RMSE, NSE, and ME) and increased coefficient of determination (R2). These insights contribute to the development of more accurate and efficient AI-driven methods in concrete mix design, promoting the advancement of concrete technology and the potential for future research in this domain.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.