Impact of Bonding Pressure on the Reactive Bonding of LTCC Substrates.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-03-11 DOI:10.3390/mi16030321
Erik Wiss, Nesrine Jaziri, Jens Müller, Steffen Wiese
{"title":"Impact of Bonding Pressure on the Reactive Bonding of LTCC Substrates.","authors":"Erik Wiss, Nesrine Jaziri, Jens Müller, Steffen Wiese","doi":"10.3390/mi16030321","DOIUrl":null,"url":null,"abstract":"<p><p>Reactive bonding can overcome the issues associated with conventional soldering processes, such as potential damage to heat-sensitive components and the creation of thermomechanical stress due to differing coefficients of thermal expansion. The risk of such damage can be reduced by using localized heat sources like reactive multilayer systems (RMS), which is already a well-established option in the field of silicon or metal bonding. Adapting this process to other materials, such as low temperature co-fired ceramics (LTCC), is difficult due to their differing properties, but it would open new technological possibilities. One aspect that significantly affects the quality of the bonding joints is the pressure applied during the bonding process. To investigate its influence more closely, various LTCC samples were manufactured, and cross-sections were prepared. The microscopical analysis reveals that there is an optimum range for the bonding pressure. While too little pressure results in the formation of lots of voids and gaps, most likely in poor mechanical and electrical properties, too high pressure seems to cause a detachment of the metallization from the base material.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946838/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16030321","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Reactive bonding can overcome the issues associated with conventional soldering processes, such as potential damage to heat-sensitive components and the creation of thermomechanical stress due to differing coefficients of thermal expansion. The risk of such damage can be reduced by using localized heat sources like reactive multilayer systems (RMS), which is already a well-established option in the field of silicon or metal bonding. Adapting this process to other materials, such as low temperature co-fired ceramics (LTCC), is difficult due to their differing properties, but it would open new technological possibilities. One aspect that significantly affects the quality of the bonding joints is the pressure applied during the bonding process. To investigate its influence more closely, various LTCC samples were manufactured, and cross-sections were prepared. The microscopical analysis reveals that there is an optimum range for the bonding pressure. While too little pressure results in the formation of lots of voids and gaps, most likely in poor mechanical and electrical properties, too high pressure seems to cause a detachment of the metallization from the base material.

键合压力对LTCC基板反应键合的影响。
反应键合可以克服与传统焊接工艺相关的问题,例如对热敏元件的潜在损坏以及由于热膨胀系数不同而产生的热机械应力。通过使用局部热源,如反应性多层系统(RMS),可以降低这种损坏的风险,这在硅或金属键合领域已经是一个成熟的选择。由于低温共烧陶瓷(LTCC)的特性不同,将这种工艺应用于其他材料是很困难的,但它将开辟新的技术可能性。影响粘接接头质量的一个重要方面是粘接过程中施加的压力。为了更密切地研究其影响,制作了各种LTCC样品,并制备了截面。微观分析表明,黏合压力存在一个最佳范围。虽然压力过小会导致形成许多空洞和缝隙,很可能导致机械和电气性能差,但压力过高似乎会导致金属化与基材分离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信