A Safe and Efficient Brain-Computer Interface Using Moving Object Trajectories and LED-Controlled Activation.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-03-16 DOI:10.3390/mi16030340
Sefa Aydin, Mesut Melek, Levent Gökrem
{"title":"A Safe and Efficient Brain-Computer Interface Using Moving Object Trajectories and LED-Controlled Activation.","authors":"Sefa Aydin, Mesut Melek, Levent Gökrem","doi":"10.3390/mi16030340","DOIUrl":null,"url":null,"abstract":"<p><p>Nowadays, brain-computer interface (BCI) systems are frequently used to connect individuals who have lost their mobility with the outside world. These BCI systems enable individuals to control external devices using brain signals. However, these systems have certain disadvantages for users. This paper proposes a novel approach to minimize the disadvantages of visual stimuli on the eye health of system users in BCI systems employing visual evoked potential (VEP) and P300 methods. The approach employs moving objects with different trajectories instead of visual stimuli. It uses a light-emitting diode (LED) with a frequency of 7 Hz as a condition for the BCI system to be active. The LED is assigned to the system to prevent it from being triggered by any involuntary or independent eye movements of the user. Thus, the system user will be able to use a safe BCI system with a single visual stimulus that blinks on the side without needing to focus on any visual stimulus through moving balls. Data were recorded in two phases: when the LED was on and when the LED was off. The recorded data were processed using a Butterworth filter and the power spectral density (PSD) method. In the first classification phase, which was performed for the system to detect the LED in the background, the highest accuracy rate of 99.57% was achieved with the random forest (RF) classification algorithm. In the second classification phase, which involves classifying moving objects within the proposed approach, the highest accuracy rate of 97.89% and an information transfer rate (ITR) value of 36.75 (bits/min) were achieved using the RF classifier.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946446/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16030340","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, brain-computer interface (BCI) systems are frequently used to connect individuals who have lost their mobility with the outside world. These BCI systems enable individuals to control external devices using brain signals. However, these systems have certain disadvantages for users. This paper proposes a novel approach to minimize the disadvantages of visual stimuli on the eye health of system users in BCI systems employing visual evoked potential (VEP) and P300 methods. The approach employs moving objects with different trajectories instead of visual stimuli. It uses a light-emitting diode (LED) with a frequency of 7 Hz as a condition for the BCI system to be active. The LED is assigned to the system to prevent it from being triggered by any involuntary or independent eye movements of the user. Thus, the system user will be able to use a safe BCI system with a single visual stimulus that blinks on the side without needing to focus on any visual stimulus through moving balls. Data were recorded in two phases: when the LED was on and when the LED was off. The recorded data were processed using a Butterworth filter and the power spectral density (PSD) method. In the first classification phase, which was performed for the system to detect the LED in the background, the highest accuracy rate of 99.57% was achieved with the random forest (RF) classification algorithm. In the second classification phase, which involves classifying moving objects within the proposed approach, the highest accuracy rate of 97.89% and an information transfer rate (ITR) value of 36.75 (bits/min) were achieved using the RF classifier.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信