{"title":"Improving Steam Methane Reforming Efficiency via Hierarchical Structure in Additively Manufactured Ni-Based Self-Catalytic Reactors.","authors":"Dongdong Dong, Jiangqi Zhu, Min Liu, Xingchen Yan, Bingwen Lu, Kesong Zhou","doi":"10.3390/ma18061350","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogen is an ideal feedstock fuel for solid oxide fuel cells (SOFCs). The steam reforming of methane (SRM) is the predominant method of producing hydrogen. However, the process of SRM relies on the involvement of a catalyst, and the reforming efficiency is constrained by the limited surface area in the traditional catalyst system. In this study, a mixer structure is applied to improve the mixing of the methane. Nano-sized pores are introduced to the struts of the mixer structure, forming a hierarchical structure, to effectively reduce the weight and increase the surface area of the self-catalytic reactors, hence increasing the catalytic efficiency. The hierarchical structure increases the reforming efficiency at all temperatures, and the level of improvement reaches its peak when the conversion rate of methane increases by 192% at 800 °C and by 40% at 900 °C compared to the self-catalyst without a hierarchical structure.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 6","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943580/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18061350","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen is an ideal feedstock fuel for solid oxide fuel cells (SOFCs). The steam reforming of methane (SRM) is the predominant method of producing hydrogen. However, the process of SRM relies on the involvement of a catalyst, and the reforming efficiency is constrained by the limited surface area in the traditional catalyst system. In this study, a mixer structure is applied to improve the mixing of the methane. Nano-sized pores are introduced to the struts of the mixer structure, forming a hierarchical structure, to effectively reduce the weight and increase the surface area of the self-catalytic reactors, hence increasing the catalytic efficiency. The hierarchical structure increases the reforming efficiency at all temperatures, and the level of improvement reaches its peak when the conversion rate of methane increases by 192% at 800 °C and by 40% at 900 °C compared to the self-catalyst without a hierarchical structure.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.