{"title":"Impact of DC Electric Field Direction on Sedimentation Behavior of Colloidal Particles in Water.","authors":"Hiroshi Kimura","doi":"10.3390/ma18061335","DOIUrl":null,"url":null,"abstract":"<p><p>Colloidal particles in water exhibit increased sedimentation velocity under a horizontal DC electric field of several V/mm compared to no field. Hollow particles with a lower density than water show an increased ascent velocity with the horizontal electric field. These phenomena suggest that colloidal particles form flocs due to the electric field, known as the Electrically Induced Rapid Separation (ERS) effect. This study investigates, for the first time, the impact of the DC electric field direction on the ERS effect. The electric field was defined as horizontal when the inclination angle <i>θ</i> = 0° and vertical at <i>θ</i> = 90°, covering all inclination angles. Results showed that the ERS effect increased for <i>θ</i> < ~20-30° in both upward and downward directions. However, beyond this range, the ERS effect decreased or disappeared. At larger <i>θ</i> values, convection was observed, significantly improving colloidal particle dispersion stability. Additionally, negatively charged particles were observed to be \"repelled\" near the negative electrode. This study offers new insights into controlling particle dispersion stability using electric fields and suggests potential applications in colloid and material science.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 6","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944156/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18061335","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Colloidal particles in water exhibit increased sedimentation velocity under a horizontal DC electric field of several V/mm compared to no field. Hollow particles with a lower density than water show an increased ascent velocity with the horizontal electric field. These phenomena suggest that colloidal particles form flocs due to the electric field, known as the Electrically Induced Rapid Separation (ERS) effect. This study investigates, for the first time, the impact of the DC electric field direction on the ERS effect. The electric field was defined as horizontal when the inclination angle θ = 0° and vertical at θ = 90°, covering all inclination angles. Results showed that the ERS effect increased for θ < ~20-30° in both upward and downward directions. However, beyond this range, the ERS effect decreased or disappeared. At larger θ values, convection was observed, significantly improving colloidal particle dispersion stability. Additionally, negatively charged particles were observed to be "repelled" near the negative electrode. This study offers new insights into controlling particle dispersion stability using electric fields and suggests potential applications in colloid and material science.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.