{"title":"Understanding dynamics in coarse-grained models. V. Extension of coarse-grained dynamics theory to non-hard sphere systems.","authors":"Jaehyeok Jin, Gregory A Voth","doi":"10.1063/5.0254388","DOIUrl":null,"url":null,"abstract":"<p><p>Coarse-grained (CG) modeling has gained significant attention in recent years due to its wide applicability in enhancing the spatiotemporal scales of molecular simulations. While CG simulations, often performed with Hamiltonian mechanics, faithfully recapitulate structural correlations at equilibrium, they lead to ambiguously accelerated dynamics. In Paper I [J. Jin, K. S. Schweizer, and G. A. Voth, J. Chem. Phys. 158(3), 034103 (2023)], we proposed the excess entropy scaling relationship to understand the CG dynamics. Then, in Paper II [J. Jin, K. S. Schweizer, and G. A. Voth, J. Chem. Phys. 158(3), 034104 (2023)], we developed a theory to map the CG system into a dynamically consistent hard sphere system to analytically derive an expression for fast CG dynamics. However, many chemical and physical systems do not exhibit hard sphere-like behavior, limiting the extensibility of the developed theory. In this paper, we aim to generalize the theory to the non-hard sphere system based on the Weeks-Chandler-Andersen perturbation theory. Since non-hard sphere-like CG interactions affect the excess entropy term as it deviates from the hard sphere description, we explicitly account for the extra entropy to correct the non-hard sphere nature of the system. This approach is demonstrated for two different types of interactions seen in liquids, and we further provide a generalized description for any CG models using the generalized Gaussian CG models using Gaussian basis sets. Altogether, this work allows for extending the range and applicability of the hard sphere CG dynamics theory to a myriad of CG liquids.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 12","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0254388","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Coarse-grained (CG) modeling has gained significant attention in recent years due to its wide applicability in enhancing the spatiotemporal scales of molecular simulations. While CG simulations, often performed with Hamiltonian mechanics, faithfully recapitulate structural correlations at equilibrium, they lead to ambiguously accelerated dynamics. In Paper I [J. Jin, K. S. Schweizer, and G. A. Voth, J. Chem. Phys. 158(3), 034103 (2023)], we proposed the excess entropy scaling relationship to understand the CG dynamics. Then, in Paper II [J. Jin, K. S. Schweizer, and G. A. Voth, J. Chem. Phys. 158(3), 034104 (2023)], we developed a theory to map the CG system into a dynamically consistent hard sphere system to analytically derive an expression for fast CG dynamics. However, many chemical and physical systems do not exhibit hard sphere-like behavior, limiting the extensibility of the developed theory. In this paper, we aim to generalize the theory to the non-hard sphere system based on the Weeks-Chandler-Andersen perturbation theory. Since non-hard sphere-like CG interactions affect the excess entropy term as it deviates from the hard sphere description, we explicitly account for the extra entropy to correct the non-hard sphere nature of the system. This approach is demonstrated for two different types of interactions seen in liquids, and we further provide a generalized description for any CG models using the generalized Gaussian CG models using Gaussian basis sets. Altogether, this work allows for extending the range and applicability of the hard sphere CG dynamics theory to a myriad of CG liquids.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.