Proteomic Dynamics in the Interaction of Susceptible and Resistant Tomato Cultivars and Potato Cyst Nematodes.

IF 5.6 2区 生物学
Marek D Koter, Marek Żurczak, Mateusz Matuszkiewicz, Magdalena Święcicka, Maciej Kotliński, Anna Barczak-Brzyżek, Marcin Filipecki
{"title":"Proteomic Dynamics in the Interaction of Susceptible and Resistant Tomato Cultivars and Potato Cyst Nematodes.","authors":"Marek D Koter, Marek Żurczak, Mateusz Matuszkiewicz, Magdalena Święcicka, Maciej Kotliński, Anna Barczak-Brzyżek, Marcin Filipecki","doi":"10.3390/ijms26062823","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the proteomic dynamics in tomato cultivars with differing resistance to potato cyst nematodes (PCNs). Cyst-forming nematodes, significant agricultural pests, induce complex molecular responses in host plants, forming syncytia in roots for their nutrition. This research employs mass spectrometry to analyze the proteomes of infected and uninfected roots from susceptible (Moneymaker) and resistant (LA1792 and L10) tomato lines. Over 2800 high-confidence protein hits were identified, revealing significant differences in abundance between susceptible and resistant lines. Notably, resistant lines exhibited a higher number of newly expressed proteins compared to susceptible lines; however, the proportion of induced and suppressed proteins was strongly genotype-dependent. Gene ontology (GO) analysis highlighted that nematode infection in susceptible line significantly regulates many defense-related proteins, particularly those involved in oxidative stress, with a similar number being upregulated and downregulated. Some GO terms enriched among nematode-regulated proteins also indicate the involvement of programmed cell death (PCD)-related processes. The susceptible line exhibited a prevalence of downregulated proteins, among which defense associated GO terms were significantly overrepresented. Four proteins (APY2, NIA2, GABA-T, and AATP1) potentially crucial for nematode parasitism were identified and their <i>Arabidopsis</i> orthologs were studied. Mutant <i>Arabidopsis</i> lines showed altered nematode resistance, supporting the involvement of these proteins in plant defense. This study highlights the complexity of host-nematode interactions and emphasizes the importance of proteomic analyses in identifying key factors and understanding plant defense mechanisms.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 6","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943225/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26062823","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the proteomic dynamics in tomato cultivars with differing resistance to potato cyst nematodes (PCNs). Cyst-forming nematodes, significant agricultural pests, induce complex molecular responses in host plants, forming syncytia in roots for their nutrition. This research employs mass spectrometry to analyze the proteomes of infected and uninfected roots from susceptible (Moneymaker) and resistant (LA1792 and L10) tomato lines. Over 2800 high-confidence protein hits were identified, revealing significant differences in abundance between susceptible and resistant lines. Notably, resistant lines exhibited a higher number of newly expressed proteins compared to susceptible lines; however, the proportion of induced and suppressed proteins was strongly genotype-dependent. Gene ontology (GO) analysis highlighted that nematode infection in susceptible line significantly regulates many defense-related proteins, particularly those involved in oxidative stress, with a similar number being upregulated and downregulated. Some GO terms enriched among nematode-regulated proteins also indicate the involvement of programmed cell death (PCD)-related processes. The susceptible line exhibited a prevalence of downregulated proteins, among which defense associated GO terms were significantly overrepresented. Four proteins (APY2, NIA2, GABA-T, and AATP1) potentially crucial for nematode parasitism were identified and their Arabidopsis orthologs were studied. Mutant Arabidopsis lines showed altered nematode resistance, supporting the involvement of these proteins in plant defense. This study highlights the complexity of host-nematode interactions and emphasizes the importance of proteomic analyses in identifying key factors and understanding plant defense mechanisms.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
10.70%
发文量
13472
审稿时长
1.7 months
期刊介绍: The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信