Impact of the Technical Snow Production Process on Bacterial Community Composition, Antibacterial Resistance Genes, and Antibiotic Input-A Dual Effect of the Inevitable.
Klaudia Stankiewicz, Klaudia Bulanda, Justyna Prajsnar, Anna Lenart-Boroń
{"title":"Impact of the Technical Snow Production Process on Bacterial Community Composition, Antibacterial Resistance Genes, and Antibiotic Input-A Dual Effect of the Inevitable.","authors":"Klaudia Stankiewicz, Klaudia Bulanda, Justyna Prajsnar, Anna Lenart-Boroń","doi":"10.3390/ijms26062771","DOIUrl":null,"url":null,"abstract":"<p><p>Although climate warming-induced snow cover reduction, as well as the development of ski tourism in hot and dry countries, is shifting industries toward the use of technical snowmaking, its use raises hydrological, health-related, and environmental concerns. This study was aimed at enhancing our current understanding of the impact of technical snowmaking on the environment and human health. Culturable bacteriological indicators of water quality (<i>Escherichia coli</i>, fecal enterococci, <i>Salmonella</i>, and <i>Staphylococcus</i>), the presence and concentration of antimicrobials, genes determining bacterial antibiotic resistance (ARGs), and next-generation sequencing-based bacterial community composition and diversity were examined from river water, technological reservoirs, and technical snow from five ski resorts. The number of culturable bacteria and prevalence of most ARGs decreased during snowmaking. The concentration of antimicrobial agents changed irregularly, e.g., ofloxacin and erythromycin dropped in the snowmaking process, while cefoxitin was quantified only in technical snow. The bacterial community composition and diversity were altered through the technical snowmaking process, resulting in the survivability of freezing temperatures or the presence of antimicrobial agents. Water storage in reservoirs prior to snowmaking allows us to reduce bacterial and ARG contaminants. Frequent and thorough cleaning of snowmaking devices may aid in reducing the negative impact snowmaking can have on the environment by reducing contaminant input and limiting the disturbance of the ecological balance.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 6","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11942910/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26062771","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Although climate warming-induced snow cover reduction, as well as the development of ski tourism in hot and dry countries, is shifting industries toward the use of technical snowmaking, its use raises hydrological, health-related, and environmental concerns. This study was aimed at enhancing our current understanding of the impact of technical snowmaking on the environment and human health. Culturable bacteriological indicators of water quality (Escherichia coli, fecal enterococci, Salmonella, and Staphylococcus), the presence and concentration of antimicrobials, genes determining bacterial antibiotic resistance (ARGs), and next-generation sequencing-based bacterial community composition and diversity were examined from river water, technological reservoirs, and technical snow from five ski resorts. The number of culturable bacteria and prevalence of most ARGs decreased during snowmaking. The concentration of antimicrobial agents changed irregularly, e.g., ofloxacin and erythromycin dropped in the snowmaking process, while cefoxitin was quantified only in technical snow. The bacterial community composition and diversity were altered through the technical snowmaking process, resulting in the survivability of freezing temperatures or the presence of antimicrobial agents. Water storage in reservoirs prior to snowmaking allows us to reduce bacterial and ARG contaminants. Frequent and thorough cleaning of snowmaking devices may aid in reducing the negative impact snowmaking can have on the environment by reducing contaminant input and limiting the disturbance of the ecological balance.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).