{"title":"Impact of the Human Leukocyte Antigen Complex on Idiopathic Pulmonary Fibrosis Development and Progression in the Sardinian Population.","authors":"Marina Serra, Stefano Mocci, Silvia Deidda, Maurizio Melis, Luchino Chessa, Sara Lai, Erika Giuressi, Caterina Mereu, Celeste Sanna, Michela Lorrai, Michela Murgia, Federica Cannas, Alessia Mascia, Andrea Perra, Roberto Littera, Sabrina Giglio","doi":"10.3390/ijms26062760","DOIUrl":null,"url":null,"abstract":"<p><p>Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease characterized by the disruption of the alveolar and interstitial architecture due to extracellular matrix deposition. Emerging evidence suggests that genetic susceptibility plays a crucial role in IPF development. This study explores the role of human leukocyte antigen (<i>HLA</i>) alleles and haplotypes in IPF susceptibility and progression within the genetically distinct Sardinian population. Genotypic data were analyzed for associations with disease onset and progression, focusing on allele and haplotype frequencies in patients exhibiting slow (S) or rapid (R) progression. While no significant differences in <i>HLA</i> allele frequencies were observed between IPF patients and controls, the <i>HLA-DRB1*04:05</i> allele and the extended haplotype (<i>HLA-A*30:02</i>, <i>B*18:01</i>, <i>C*05:01</i>, <i>DQA1*05:01</i>, <i>DQB1*02:01</i>, <i>DRB1*03:01</i>) were associated with a slower disease progression and improved survival (log-rank = 0.032 and 0.01, respectively). At 36 months, carriers of these variants demonstrated significantly better pulmonary function, measured with single-breath carbon monoxide diffusing capacity (DLCO%p) (<i>p</i> = 0.005 and 0.02, respectively). Multivariate analysis confirmed these findings as being independent of confounding factors. These results highlight the impact of <i>HLA</i> alleles and haplotypes on IPF outcomes and underscore the potential of the Sardinian genetic landscape to illuminate immunological mechanisms, paving the way for predictive biomarkers and personalized therapies.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 6","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11942992/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26062760","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease characterized by the disruption of the alveolar and interstitial architecture due to extracellular matrix deposition. Emerging evidence suggests that genetic susceptibility plays a crucial role in IPF development. This study explores the role of human leukocyte antigen (HLA) alleles and haplotypes in IPF susceptibility and progression within the genetically distinct Sardinian population. Genotypic data were analyzed for associations with disease onset and progression, focusing on allele and haplotype frequencies in patients exhibiting slow (S) or rapid (R) progression. While no significant differences in HLA allele frequencies were observed between IPF patients and controls, the HLA-DRB1*04:05 allele and the extended haplotype (HLA-A*30:02, B*18:01, C*05:01, DQA1*05:01, DQB1*02:01, DRB1*03:01) were associated with a slower disease progression and improved survival (log-rank = 0.032 and 0.01, respectively). At 36 months, carriers of these variants demonstrated significantly better pulmonary function, measured with single-breath carbon monoxide diffusing capacity (DLCO%p) (p = 0.005 and 0.02, respectively). Multivariate analysis confirmed these findings as being independent of confounding factors. These results highlight the impact of HLA alleles and haplotypes on IPF outcomes and underscore the potential of the Sardinian genetic landscape to illuminate immunological mechanisms, paving the way for predictive biomarkers and personalized therapies.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).