Alejandro Berenguer-Rubio, Esperanza Such, Neus Torres Hernández, Paula González-Rojo, Álvaro Díaz-González, Gayane Avetisyan, Carolina Gil-Aparicio, Judith González-López, Nicolay Pantoja-Borja, Luis Alberto Rubio-Martínez, Soraya Hernández-Girón, María Soledad Valera-Cuesta, Cristina Ramírez-Fuentes, María Simonet-Redondo, Roberto Díaz-Beveridge, Carolina de la Calva, José Vicente Amaya-Valero, Cristina Ballester-Ibáñez, Alessandro Liquori, Francisco Giner, Empar Mayordomo-Aranda
{"title":"Exploring the Potential of Optical Genome Mapping in the Diagnosis and Prognosis of Soft Tissue and Bone Tumors.","authors":"Alejandro Berenguer-Rubio, Esperanza Such, Neus Torres Hernández, Paula González-Rojo, Álvaro Díaz-González, Gayane Avetisyan, Carolina Gil-Aparicio, Judith González-López, Nicolay Pantoja-Borja, Luis Alberto Rubio-Martínez, Soraya Hernández-Girón, María Soledad Valera-Cuesta, Cristina Ramírez-Fuentes, María Simonet-Redondo, Roberto Díaz-Beveridge, Carolina de la Calva, José Vicente Amaya-Valero, Cristina Ballester-Ibáñez, Alessandro Liquori, Francisco Giner, Empar Mayordomo-Aranda","doi":"10.3390/ijms26062820","DOIUrl":null,"url":null,"abstract":"<p><p>Sarcomas are rare malignant tumors of mesenchymal origin with a high misdiagnosis rate due to their heterogeneity and low incidence. Conventional diagnostic techniques, such as Fluorescence In Situ Hybridization (FISH) and Next-Generation Sequencing (NGS), have limitations in detecting structural variations (SVs), copy number variations (CNVs), and predicting clinical behavior. Optical genome mapping (OGM) provides high-resolution genome-wide analysis, improving sarcoma diagnosis and prognosis assessment. This study analyzed 53 sarcoma samples using OGM. Ultra-high molecular weight (UHMW) DNA was extracted from core and resection biopsies, and data acquisition was performed with the <i>Bionano Saphyr</i> platform. Bioinformatic pipelines identified structural variations, comparing them with known alterations for each sarcoma subtype. OGM successfully analyzed 62.3% of samples. Diagnostic-defining alterations were found in 95.2% of cases, refining diagnoses and revealing novel oncogenic and tumor suppressor gene alterations. The challenges included DNA extraction and quality issues from some tissue samples. Despite these limitations, OGM proved to be a powerful diagnostic and predictive tool for bone and soft tissue sarcomas, surpassing conventional methods in resolution and scope, enhancing the understanding of sarcoma genetics, and enabling better patient stratification and personalized therapies.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 6","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11942867/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26062820","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Sarcomas are rare malignant tumors of mesenchymal origin with a high misdiagnosis rate due to their heterogeneity and low incidence. Conventional diagnostic techniques, such as Fluorescence In Situ Hybridization (FISH) and Next-Generation Sequencing (NGS), have limitations in detecting structural variations (SVs), copy number variations (CNVs), and predicting clinical behavior. Optical genome mapping (OGM) provides high-resolution genome-wide analysis, improving sarcoma diagnosis and prognosis assessment. This study analyzed 53 sarcoma samples using OGM. Ultra-high molecular weight (UHMW) DNA was extracted from core and resection biopsies, and data acquisition was performed with the Bionano Saphyr platform. Bioinformatic pipelines identified structural variations, comparing them with known alterations for each sarcoma subtype. OGM successfully analyzed 62.3% of samples. Diagnostic-defining alterations were found in 95.2% of cases, refining diagnoses and revealing novel oncogenic and tumor suppressor gene alterations. The challenges included DNA extraction and quality issues from some tissue samples. Despite these limitations, OGM proved to be a powerful diagnostic and predictive tool for bone and soft tissue sarcomas, surpassing conventional methods in resolution and scope, enhancing the understanding of sarcoma genetics, and enabling better patient stratification and personalized therapies.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).