Pulmonary Myeloid Cells in Mild Cases of COVID-19 Upregulate the Intracellular Fc Receptor TRIM21 and Transcribe Proteasome-Associated Molecules.

IF 5.6 2区 生物学
Andrea Henriques-Pons, Maria Clicia S Castro, Vanessa S Silva, Maiana O C Costa, Helena S I L Silva, Maria Emilia M T Walter, Anna Cristina C Carvalho, Alba C M A Melo, Kary Ocaña, Marcelo T Dos Santos, Marisa F Nicolas, Fabrício A B Silva
{"title":"Pulmonary Myeloid Cells in Mild Cases of COVID-19 Upregulate the Intracellular Fc Receptor <i>TRIM21</i> and Transcribe Proteasome-Associated Molecules.","authors":"Andrea Henriques-Pons, Maria Clicia S Castro, Vanessa S Silva, Maiana O C Costa, Helena S I L Silva, Maria Emilia M T Walter, Anna Cristina C Carvalho, Alba C M A Melo, Kary Ocaña, Marcelo T Dos Santos, Marisa F Nicolas, Fabrício A B Silva","doi":"10.3390/ijms26062769","DOIUrl":null,"url":null,"abstract":"<p><p>Much remains to be understood about COVID-19, but the protective role of antibodies (Igs) is widely accepted in SARS-CoV-2 infection. Igs' functions are mainly carried out by receptors that bind to their Fc portion (FcR), and less attention has been dedicated to the cytoplasmic members of this family. In this work, we used single-cell RNA sequencing (scRNA-seq) data to discern cell populations in bronchoalveolar lavage fluid obtained from healthy individuals and patients with mild or severe COVID-19. Then, we evaluated the transcription of neonatal FcR (FcRn, <i>FCGRT</i> gene) and tripartite motif-containing protein 21 (<i>TRIM21</i>) and its downstream signaling components. The TRIM21 pathway is vital for virus infections as it has a dual function, leading opsonized viruses to degradation by proteasomes and the activation of innate inflammatory anti-virus response. The transcriptional level of <i>FCGRT</i> showed no statistical differences in any cell population comparing the three groups of patients. On the other hand, <i>TRIM21</i> transcription was significantly higher in myeloid cells collected from patients with mild COVID-19. When comparing mild with severe cases, there was no statistical difference in <i>TRIM21</i> transcription in lung adaptive lymphoid cells and innate lymphoid cells (ILC). Yet, we analyzed the transcription of all downstream signaling molecules in myeloid and, as most cells expressed the receptor, in adaptive lymphoid cells. Moreover, ILCs from mild cases and all cell populations from severe cases were missing most downstream components of the pathway. We observed that members of the ubiquitin-proteasome system (UPS) and other components associated with TRIM21 proteasomal degradation were transcribed in mild cases. Despite the transcription of the danger sensors <i>DDX58</i> and <i>IFIH1</i>, the transcriptional level of inflammatory <i>IL1B</i> and <i>IL18</i> was generally very low, along with the <i>NLRP3</i> danger sensor, members of the NF-κB pathway, and <i>TNF</i>. Therefore, our data suggest that TRIM21 may contribute to SARS-CoV-2 protection by reducing the viral load, while the inflammatory branch of the pathway would be silenced, leading to no pathogenic cytokine production.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 6","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943277/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26062769","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Much remains to be understood about COVID-19, but the protective role of antibodies (Igs) is widely accepted in SARS-CoV-2 infection. Igs' functions are mainly carried out by receptors that bind to their Fc portion (FcR), and less attention has been dedicated to the cytoplasmic members of this family. In this work, we used single-cell RNA sequencing (scRNA-seq) data to discern cell populations in bronchoalveolar lavage fluid obtained from healthy individuals and patients with mild or severe COVID-19. Then, we evaluated the transcription of neonatal FcR (FcRn, FCGRT gene) and tripartite motif-containing protein 21 (TRIM21) and its downstream signaling components. The TRIM21 pathway is vital for virus infections as it has a dual function, leading opsonized viruses to degradation by proteasomes and the activation of innate inflammatory anti-virus response. The transcriptional level of FCGRT showed no statistical differences in any cell population comparing the three groups of patients. On the other hand, TRIM21 transcription was significantly higher in myeloid cells collected from patients with mild COVID-19. When comparing mild with severe cases, there was no statistical difference in TRIM21 transcription in lung adaptive lymphoid cells and innate lymphoid cells (ILC). Yet, we analyzed the transcription of all downstream signaling molecules in myeloid and, as most cells expressed the receptor, in adaptive lymphoid cells. Moreover, ILCs from mild cases and all cell populations from severe cases were missing most downstream components of the pathway. We observed that members of the ubiquitin-proteasome system (UPS) and other components associated with TRIM21 proteasomal degradation were transcribed in mild cases. Despite the transcription of the danger sensors DDX58 and IFIH1, the transcriptional level of inflammatory IL1B and IL18 was generally very low, along with the NLRP3 danger sensor, members of the NF-κB pathway, and TNF. Therefore, our data suggest that TRIM21 may contribute to SARS-CoV-2 protection by reducing the viral load, while the inflammatory branch of the pathway would be silenced, leading to no pathogenic cytokine production.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
10.70%
发文量
13472
审稿时长
1.7 months
期刊介绍: The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信