{"title":"Carbon Monoxide and Prokaryotic Energy Metabolism.","authors":"Vitaliy B Borisov, Elena Forte","doi":"10.3390/ijms26062809","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon monoxide (CO) plays a multifaceted role in both physiology and pathophysiology. At high levels, it is lethal to humans due to its tight binding to globins and cytochrome <i>c</i> oxidase. At low doses, CO can exhibit beneficial effects; it serves as an endogenous signaling molecule and possesses antibacterial properties, which opens up possibilities for its use as an antimicrobial agent. For this purpose, research is in progress to develop metal-based CO-releasing molecules, metal-free organic CO prodrugs, and CO-generating hydrogel microspheres. The energy metabolism of prokaryotes is a key point that may be targeted by CO to kill invading pathogens. The cornerstone of prokaryotic energy metabolism is a series of membrane-bound enzyme complexes, which constitute a respiratory chain. Terminal oxidases, at the end of this chain, contain hemes and are therefore potential targets for CO. However, this research area is at its very early stage. The impact of CO on bacterial energy metabolism may also provide a basis for biotechnological applications in which this gas is present. This review discusses the molecular basis of the effects of CO on microbial growth and aerobic respiration supported by different terminal oxidases in light of recent findings.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 6","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11942997/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26062809","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon monoxide (CO) plays a multifaceted role in both physiology and pathophysiology. At high levels, it is lethal to humans due to its tight binding to globins and cytochrome c oxidase. At low doses, CO can exhibit beneficial effects; it serves as an endogenous signaling molecule and possesses antibacterial properties, which opens up possibilities for its use as an antimicrobial agent. For this purpose, research is in progress to develop metal-based CO-releasing molecules, metal-free organic CO prodrugs, and CO-generating hydrogel microspheres. The energy metabolism of prokaryotes is a key point that may be targeted by CO to kill invading pathogens. The cornerstone of prokaryotic energy metabolism is a series of membrane-bound enzyme complexes, which constitute a respiratory chain. Terminal oxidases, at the end of this chain, contain hemes and are therefore potential targets for CO. However, this research area is at its very early stage. The impact of CO on bacterial energy metabolism may also provide a basis for biotechnological applications in which this gas is present. This review discusses the molecular basis of the effects of CO on microbial growth and aerobic respiration supported by different terminal oxidases in light of recent findings.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).