Xugen Shi, Wei An, Yunyi Li, Yibo Wang, Enduo Dai, Mingming Liu, Ruixian Guo, Jinguo Wang
{"title":"Heteroatom decorated C2N monolayer for gas-sensing application: Insight from first-principles.","authors":"Xugen Shi, Wei An, Yunyi Li, Yibo Wang, Enduo Dai, Mingming Liu, Ruixian Guo, Jinguo Wang","doi":"10.1063/5.0258025","DOIUrl":null,"url":null,"abstract":"<p><p>Development of novel gas-sensing materials is essential to high-performance gas sensors for monitoring target gases in industrial production and environmental protection. Herein, we investigate two types of the heteroatom-decorated C2N monolayer, denoted as M@C2N (M = Mn and Ni) and B-C2N, for their gas-sensing functionality toward seven small gaseous molecules (H2, O2, N2, CO, CO2, NH3, and H2O). The key gas-sensing characteristics concerning chemiresistive (CR) and field-effect transistor (FET) gas sensing have been thoroughly explored. The results show that Mn@C2N and Ni@C2N can work as either CR or FET gas-sensing materials for detecting H2, O2, N2, CO, CO2, NH3, and H2O, whereas B-C2N can work as a disposable gas sensor for O2, H2O, and NH3. Mn@C2N and Ni@C2N are the most selective toward O2 and NH3, followed by CO and H2O in an oxygen- and ammonia-free environment, while B-C2N is the most selective toward H2O and NH3. More importantly, the adsorption strength of target molecule plays a critical role in gas-sensing mechanism as well as selectivity, recovery time, and sensitivity. This study offers theoretical perspectives on 2D hybrid carbon-based nanomaterials for efficient gas sensing.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 12","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0258025","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Development of novel gas-sensing materials is essential to high-performance gas sensors for monitoring target gases in industrial production and environmental protection. Herein, we investigate two types of the heteroatom-decorated C2N monolayer, denoted as M@C2N (M = Mn and Ni) and B-C2N, for their gas-sensing functionality toward seven small gaseous molecules (H2, O2, N2, CO, CO2, NH3, and H2O). The key gas-sensing characteristics concerning chemiresistive (CR) and field-effect transistor (FET) gas sensing have been thoroughly explored. The results show that Mn@C2N and Ni@C2N can work as either CR or FET gas-sensing materials for detecting H2, O2, N2, CO, CO2, NH3, and H2O, whereas B-C2N can work as a disposable gas sensor for O2, H2O, and NH3. Mn@C2N and Ni@C2N are the most selective toward O2 and NH3, followed by CO and H2O in an oxygen- and ammonia-free environment, while B-C2N is the most selective toward H2O and NH3. More importantly, the adsorption strength of target molecule plays a critical role in gas-sensing mechanism as well as selectivity, recovery time, and sensitivity. This study offers theoretical perspectives on 2D hybrid carbon-based nanomaterials for efficient gas sensing.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.