Ville-Petteri Mäkinen, Mika Kähönen, Terho Lehtimäki, Nina Hutri, Tapani Rönnemaa, Jorma Viikari, Katja Pahkala, Suvi Rovio, Harri Niinikoski, Juha Mykkänen, Olli Raitakari, Mika Ala-Korpela
{"title":"Metabolic transition from childhood to adulthood based on two decades of biochemical time series in three longitudinal cohorts.","authors":"Ville-Petteri Mäkinen, Mika Kähönen, Terho Lehtimäki, Nina Hutri, Tapani Rönnemaa, Jorma Viikari, Katja Pahkala, Suvi Rovio, Harri Niinikoski, Juha Mykkänen, Olli Raitakari, Mika Ala-Korpela","doi":"10.1093/ije/dyaf026","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This is the first large-scale longitudinal study of children that describes the temporal trajectories of an extensive collection of metabolic measures that are relevant for lifelong cardiometabolic risk. We also provide a comprehensive picture on how metabolism develops into mature adult sex-specific phenotypes.</p><p><strong>Methods: </strong>Children born in 1962-92 were recruited by three European studies (n = 20 377 eligible). Biochemical data for ages 0-26 years were available for n = 14 958 participants (n = 8385 with metabolomics). Age associations for 168 metabolic measures (6 physiological traits, 6 clinical biomarkers, and 156 serum metabolomics measures) were determined by using curvilinear regression. Puberty effects were calculated by using logistic regression of biological sex for pre- and post-pubertal age strata.</p><p><strong>Results: </strong>Age-specific concentrations were reported for all measures. Nonlinear age associations were typical, including insulin (R2 = 20.7% ±0.6% variance explained ±SE), glycerol (13.3% ±1.3%), glycoprotein acetyls (40.3% ±1.5%), and branched-chain amino acids (19.5% ±1.6%). Apolipoprotein B was not associated with age (0.7% ±0.4%). Multivariate modeling indicated that boys diverged from girls metabolically during ages 13-17 years. Puberty effects were observed for large high-density lipoprotein cholesterol (P = 8.5 × 10-288), leucine (P < 2.3 × 10-308), glutamine (P < 2.3 × 10-308), albumin (P = 1.7 × 10-161), docosahexaenoic acid (P = 5.2 × 10-50), and sphingomyelin (P = 4.4 × 10-90).</p><p><strong>Conclusion: </strong>Novel associations between emerging cardiometabolic risk factors, such as amino acids and glycoprotein acetyls, and growth and puberty were observed. Conversely, apolipoprotein B was stable, which favors its utility for early assessments of lifetime cardiovascular risk.</p>","PeriodicalId":14147,"journal":{"name":"International journal of epidemiology","volume":"54 2","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11947525/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/ije/dyaf026","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Background: This is the first large-scale longitudinal study of children that describes the temporal trajectories of an extensive collection of metabolic measures that are relevant for lifelong cardiometabolic risk. We also provide a comprehensive picture on how metabolism develops into mature adult sex-specific phenotypes.
Methods: Children born in 1962-92 were recruited by three European studies (n = 20 377 eligible). Biochemical data for ages 0-26 years were available for n = 14 958 participants (n = 8385 with metabolomics). Age associations for 168 metabolic measures (6 physiological traits, 6 clinical biomarkers, and 156 serum metabolomics measures) were determined by using curvilinear regression. Puberty effects were calculated by using logistic regression of biological sex for pre- and post-pubertal age strata.
Results: Age-specific concentrations were reported for all measures. Nonlinear age associations were typical, including insulin (R2 = 20.7% ±0.6% variance explained ±SE), glycerol (13.3% ±1.3%), glycoprotein acetyls (40.3% ±1.5%), and branched-chain amino acids (19.5% ±1.6%). Apolipoprotein B was not associated with age (0.7% ±0.4%). Multivariate modeling indicated that boys diverged from girls metabolically during ages 13-17 years. Puberty effects were observed for large high-density lipoprotein cholesterol (P = 8.5 × 10-288), leucine (P < 2.3 × 10-308), glutamine (P < 2.3 × 10-308), albumin (P = 1.7 × 10-161), docosahexaenoic acid (P = 5.2 × 10-50), and sphingomyelin (P = 4.4 × 10-90).
Conclusion: Novel associations between emerging cardiometabolic risk factors, such as amino acids and glycoprotein acetyls, and growth and puberty were observed. Conversely, apolipoprotein B was stable, which favors its utility for early assessments of lifetime cardiovascular risk.
期刊介绍:
The International Journal of Epidemiology is a vital resource for individuals seeking to stay updated on the latest advancements and emerging trends in the field of epidemiology worldwide.
The journal fosters communication among researchers, educators, and practitioners involved in the study, teaching, and application of epidemiology pertaining to both communicable and non-communicable diseases. It also includes research on health services and medical care.
Furthermore, the journal presents new methodologies in epidemiology and statistics, catering to professionals working in social and preventive medicine. Published six times a year, the International Journal of Epidemiology provides a comprehensive platform for the analysis of data.
Overall, this journal is an indispensable tool for staying informed and connected within the dynamic realm of epidemiology.