Anne-Sophie Boucard, Saulius Kulakauskas, Jana Alazzaz, Soraya Chaouch, Mohamed Mammeri, Aaron Millan-Oropeza, Carine Machado, Céline Henry, Christine Péchoux, Holger Richly, Michael Gassel, Philippe Langella, Bruno Polack, Isabelle Florent, Luis G Bermúdez-Humarán
{"title":"Isolation of derivatives from the food-grade probiotic <i>Lactobacillus johnsonii</i> CNCM I-4884 with enhanced anti-<i>Giardia</i> activity.","authors":"Anne-Sophie Boucard, Saulius Kulakauskas, Jana Alazzaz, Soraya Chaouch, Mohamed Mammeri, Aaron Millan-Oropeza, Carine Machado, Céline Henry, Christine Péchoux, Holger Richly, Michael Gassel, Philippe Langella, Bruno Polack, Isabelle Florent, Luis G Bermúdez-Humarán","doi":"10.1080/19490976.2025.2474149","DOIUrl":null,"url":null,"abstract":"<p><p>Giardiasis, a widespread intestinal parasitosis affecting humans and animals, is a growing concern due to the emergence of drug-resistant strains of <i>G. intestinalis</i>. Probiotics offer a promising alternative for preventing and treating giardiasis. Recent studies have shown that the probiotic <i>Lactobacillus johnsonii</i> CNCM I-4884 inhibits <i>G. intestinalis</i> growth both <i>in vitro</i> and <i>in vivo</i>. This protective effect is largely mediated by bile salt hydrolase (BSH) enzymes, which convert conjugated bile acids (BAs) into free forms that are toxic to the parasite. The objective of this study was to use adaptive evolution to develop stress-resistant derivatives of <i>L. johnsonii</i> CNCM I-4884, with the aim of improving its anti-<i>Giardia</i> activity. Twelve derivatives with enhanced resistance to BAs and reduced autolysis were generated. Among them, derivative M11 exhibited the highest <i>in vitro</i> anti-<i>Giardia</i> effect with enhanced BSH activity. Genomic and proteomic analyses of M11 revealed two SNPs and the upregulation of the global stress response by SigB, which likely contributed to its increased BAs resistance and BSH overproduction. Finally, the anti-<i>Giardia</i> efficacy of M11 was validated in a murine model of giardiasis. In conclusion, our results demonstrate that adaptive evolution is an effective strategy to generate robust food-grade bacteria with improved health benefits.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2474149"},"PeriodicalIF":12.2000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11951713/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gut Microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19490976.2025.2474149","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Giardiasis, a widespread intestinal parasitosis affecting humans and animals, is a growing concern due to the emergence of drug-resistant strains of G. intestinalis. Probiotics offer a promising alternative for preventing and treating giardiasis. Recent studies have shown that the probiotic Lactobacillus johnsonii CNCM I-4884 inhibits G. intestinalis growth both in vitro and in vivo. This protective effect is largely mediated by bile salt hydrolase (BSH) enzymes, which convert conjugated bile acids (BAs) into free forms that are toxic to the parasite. The objective of this study was to use adaptive evolution to develop stress-resistant derivatives of L. johnsonii CNCM I-4884, with the aim of improving its anti-Giardia activity. Twelve derivatives with enhanced resistance to BAs and reduced autolysis were generated. Among them, derivative M11 exhibited the highest in vitro anti-Giardia effect with enhanced BSH activity. Genomic and proteomic analyses of M11 revealed two SNPs and the upregulation of the global stress response by SigB, which likely contributed to its increased BAs resistance and BSH overproduction. Finally, the anti-Giardia efficacy of M11 was validated in a murine model of giardiasis. In conclusion, our results demonstrate that adaptive evolution is an effective strategy to generate robust food-grade bacteria with improved health benefits.
期刊介绍:
The intestinal microbiota plays a crucial role in human physiology, influencing various aspects of health and disease such as nutrition, obesity, brain function, allergic responses, immunity, inflammatory bowel disease, irritable bowel syndrome, cancer development, cardiac disease, liver disease, and more.
Gut Microbes serves as a platform for showcasing and discussing state-of-the-art research related to the microorganisms present in the intestine. The journal emphasizes mechanistic and cause-and-effect studies. Additionally, it has a counterpart, Gut Microbes Reports, which places a greater focus on emerging topics and comparative and incremental studies.