Federica Bruno, Christiana Georgiou, Deirdre Cunningham, Lucy Bett, Marine A Secchi, Samantha Atkinson, Sara González Antón, Flora Birch, Jean Langhorne, Cristina Lo Celso
{"title":"Differential Response and Recovery Dynamics of HSPC Populations Following <i>Plasmodium chabaudi</i> Infection.","authors":"Federica Bruno, Christiana Georgiou, Deirdre Cunningham, Lucy Bett, Marine A Secchi, Samantha Atkinson, Sara González Antón, Flora Birch, Jean Langhorne, Cristina Lo Celso","doi":"10.3390/ijms26062816","DOIUrl":null,"url":null,"abstract":"<p><p>Severe infections such as malaria are on the rise worldwide, driven by both climate change and increasing drug resistance. It is therefore paramount that we better understand how the host responds to severe infection. Hematopoiesis is particularly of interest in this context because hematopoietic stem and progenitor cells (HSPCs) maintain the turnover of all blood cells, including all immune cells. Severe infections have been widely acknowledged to affect HSPCs; however, this disruption has been mainly studied during the acute phase, and the process and level of HSPC recovery remain understudied. Using a self-resolving model of natural rodent malaria, infection by <i>Plasmodium chabaudi</i>, here we systematically assess phenotypically defined HSPCs' acute response and recovery upon pathogen clearance. We demonstrate that during the acute phase of infection the most quiescent and functional stem cells are depleted, multipotent progenitor compartments are drastically enlarged, and oligopotent progenitors virtually disappear, underpinned by dramatic, population-specific and sometimes unexpected changes in proliferation rates. HSPC populations return to homeostatic size and proliferation rate again through specific patterns of recovery. Overall, our data demonstrate that HSPC populations adopt different responses to cope with severe infection and suggest that the ability to adjust proliferative capacity becomes more restricted as differentiation progresses.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 6","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943058/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26062816","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Severe infections such as malaria are on the rise worldwide, driven by both climate change and increasing drug resistance. It is therefore paramount that we better understand how the host responds to severe infection. Hematopoiesis is particularly of interest in this context because hematopoietic stem and progenitor cells (HSPCs) maintain the turnover of all blood cells, including all immune cells. Severe infections have been widely acknowledged to affect HSPCs; however, this disruption has been mainly studied during the acute phase, and the process and level of HSPC recovery remain understudied. Using a self-resolving model of natural rodent malaria, infection by Plasmodium chabaudi, here we systematically assess phenotypically defined HSPCs' acute response and recovery upon pathogen clearance. We demonstrate that during the acute phase of infection the most quiescent and functional stem cells are depleted, multipotent progenitor compartments are drastically enlarged, and oligopotent progenitors virtually disappear, underpinned by dramatic, population-specific and sometimes unexpected changes in proliferation rates. HSPC populations return to homeostatic size and proliferation rate again through specific patterns of recovery. Overall, our data demonstrate that HSPC populations adopt different responses to cope with severe infection and suggest that the ability to adjust proliferative capacity becomes more restricted as differentiation progresses.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).