Identification and Assessment of lncRNAs and mRNAs in PM2.5-Induced Hepatic Steatosis.

IF 5.6 2区 生物学
Peixuan Tian, Hui Xia, Xinbao Li, Ying Wang, Bihuan Hu, Yu Yang, Guiju Sun, Jing Sui
{"title":"Identification and Assessment of lncRNAs and mRNAs in PM2.5-Induced Hepatic Steatosis.","authors":"Peixuan Tian, Hui Xia, Xinbao Li, Ying Wang, Bihuan Hu, Yu Yang, Guiju Sun, Jing Sui","doi":"10.3390/ijms26062808","DOIUrl":null,"url":null,"abstract":"<p><p>Research indicates that fine particulate matter (PM2.5) exposure is associated with the onset of non-alcoholic fatty liver disease (NAFLD), the most prevalent chronic liver disorder. However, the underlying pathogenesis mechanisms remain to be fully understood. Our study investigated the hub long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) associated with hepatic steatosis caused by PM2.5 exposure and their pathological mechanisms. The analysis of gene profiles in the GSE186900 dataset from the Gene Expression Omnibus (GEO) enabled the identification of 38 differentially expressed lncRNAs and 1945 mRNAs. To explore further, a co-expression network was established utilizing weighted gene co-expression network analysis (WGCNA). Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were utilized for functional enrichment analysis. Our analysis identified specific modules, particularly the blue and turquoise modules, which showed a strong correlation with NAFLD. Through functional enrichment analysis, we identified several lncRNAs (including <i>Gm15446</i>, <i>Tmem181b-ps</i>, <i>Adh6-ps1</i>, <i>Gm5848</i>, <i>Zfp141</i>, <i>Rmrp</i>, and <i>Rb1</i>) which may be involved in modulating NAFLD, multiple metabolic pathways, inflammation, cell senescence, apoptosis, oxidative stress, and various signaling pathways. The hub lncRNAs identified in our study provide novel biomarkers and potential targets for the diagnosis and treatment of NAFLD.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 6","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943408/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26062808","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Research indicates that fine particulate matter (PM2.5) exposure is associated with the onset of non-alcoholic fatty liver disease (NAFLD), the most prevalent chronic liver disorder. However, the underlying pathogenesis mechanisms remain to be fully understood. Our study investigated the hub long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) associated with hepatic steatosis caused by PM2.5 exposure and their pathological mechanisms. The analysis of gene profiles in the GSE186900 dataset from the Gene Expression Omnibus (GEO) enabled the identification of 38 differentially expressed lncRNAs and 1945 mRNAs. To explore further, a co-expression network was established utilizing weighted gene co-expression network analysis (WGCNA). Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were utilized for functional enrichment analysis. Our analysis identified specific modules, particularly the blue and turquoise modules, which showed a strong correlation with NAFLD. Through functional enrichment analysis, we identified several lncRNAs (including Gm15446, Tmem181b-ps, Adh6-ps1, Gm5848, Zfp141, Rmrp, and Rb1) which may be involved in modulating NAFLD, multiple metabolic pathways, inflammation, cell senescence, apoptosis, oxidative stress, and various signaling pathways. The hub lncRNAs identified in our study provide novel biomarkers and potential targets for the diagnosis and treatment of NAFLD.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
10.70%
发文量
13472
审稿时长
1.7 months
期刊介绍: The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信