Qinrui Liu, Michael F Forrester, Dhananjay Dileep, Aadhi Subbiah, Vivek Garg, Demetrius Finley, Eric W Cochran, George A Kraus, Scott R Broderick
{"title":"Data-Driven Modeling and Design of Sustainable High Tg Polymers.","authors":"Qinrui Liu, Michael F Forrester, Dhananjay Dileep, Aadhi Subbiah, Vivek Garg, Demetrius Finley, Eric W Cochran, George A Kraus, Scott R Broderick","doi":"10.3390/ijms26062743","DOIUrl":null,"url":null,"abstract":"<p><p>This paper develops a machine learning methodology for the rapid and robust prediction of the glass transition temperature (Tg) for polymers for the targeted application of sustainable high-temperature polymers. The machine learning framework combines multiple techniques to develop a feature set encompassing all relative aspects of polymer chemistry, to extract and explain correlations between features and Tg, and to develop and apply a high-throughput predictive model. In this work, we identify aspects of the chemistry that most impact Tg, including a parameter related to rotational degrees of freedom and a backbone index based on a steric hindrance parameter. Building on this scientific understanding, models are developed on different types of data to ensure robustness, and experimental validation is obtained through the testing of new polymer chemistry with remarkable Tg. The ability of our model to predict Tg shows that the relevant information is contained within the topological descriptors, while the requirement of non-linear manifold transformation of the data also shows that the relationships are complex and cannot be captured through traditional regression approaches. Building on the scientific understanding obtained from the correlation analyses, coupled with the model performance, it is shown that the rigidity and interaction dynamics of the polymer structure are key to tuning for achieving targeted performance. This work has implications for future rapid optimization of chemistries.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 6","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11942765/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26062743","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper develops a machine learning methodology for the rapid and robust prediction of the glass transition temperature (Tg) for polymers for the targeted application of sustainable high-temperature polymers. The machine learning framework combines multiple techniques to develop a feature set encompassing all relative aspects of polymer chemistry, to extract and explain correlations between features and Tg, and to develop and apply a high-throughput predictive model. In this work, we identify aspects of the chemistry that most impact Tg, including a parameter related to rotational degrees of freedom and a backbone index based on a steric hindrance parameter. Building on this scientific understanding, models are developed on different types of data to ensure robustness, and experimental validation is obtained through the testing of new polymer chemistry with remarkable Tg. The ability of our model to predict Tg shows that the relevant information is contained within the topological descriptors, while the requirement of non-linear manifold transformation of the data also shows that the relationships are complex and cannot be captured through traditional regression approaches. Building on the scientific understanding obtained from the correlation analyses, coupled with the model performance, it is shown that the rigidity and interaction dynamics of the polymer structure are key to tuning for achieving targeted performance. This work has implications for future rapid optimization of chemistries.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).