Imaging the enteric nervous system.

IF 2.1 4区 医学 Q1 ANATOMY & MORPHOLOGY
Frontiers in Neuroanatomy Pub Date : 2025-03-12 eCollection Date: 2025-01-01 DOI:10.3389/fnana.2025.1532900
Doriane Hazart, Marwa Moulzir, Brigitte Delhomme, Martin Oheim, Clément Ricard
{"title":"Imaging the enteric nervous system.","authors":"Doriane Hazart, Marwa Moulzir, Brigitte Delhomme, Martin Oheim, Clément Ricard","doi":"10.3389/fnana.2025.1532900","DOIUrl":null,"url":null,"abstract":"<p><p>The enteric nervous system (ENS) has garnered increasing scientific interest due to its pivotal role in digestive processes and its involvement in various gastrointestinal and central nervous system (CNS) disorders, including Crohn's disease, Parkinson's disease, and autism. Despite its significance, the ENS remains relatively underexplored by neurobiologists, primarily because its structure and function are less understood compared to the CNS. This review examines both pioneering methodologies that initially revealed the intricate layered structure of the ENS and recent advancements in studying its three-dimensional (3-D) organization, both in fixed samples and at a functional level, <i>ex-vivo</i> or <i>in-vivo</i>. Traditionally, imaging the ENS relied on histological techniques involving sequential tissue sectioning, staining, and microscopic imaging of single sections. However, this method has limitations representing the full complexity of the ENS's 3-D meshwork, which led to the development of more intact preparations, such as whole-mount preparation, as well as the use of volume imaging techniques. Advancements in 3-D imaging, particularly methods like spinning-disk confocal, 2-photon, and light-sheet microscopies, combined with tissue-clearing techniques, have revolutionized our understanding of the ENS's fine structure. These approaches offer detailed views of its cellular architecture, including interactions among various cell types, blood vessels, and lymphatic vessels. They have also enhanced our comprehension of ENS-related pathologies, such as inflammatory bowel disease, Hirschsprung's disease (HSCR), and the ENS's involvement in neurodegenerative disorders like Parkinson's (PD) and Alzheimer's diseases (AD). More recently, 2-photon or confocal <i>in-vivo</i> imaging, combined with transgenic approaches for calcium imaging, or confocal laser endomicroscopy, have opened new avenues for functional studies of the ENS. These methods enable real-time observation of enteric neuronal and glial activity and their interactions. While routinely used in CNS studies, their application to understanding local circuits and signals in the ENS is relatively recent and presents unique challenges, such as accommodating peristaltic movements. Advancements in 3-D <i>in-vivo</i> functional imaging are expected to significantly deepen our understanding of the ENS and its roles in gastrointestinal and neurological diseases, potentially leading to improved diagnostic and therapeutic strategies.</p>","PeriodicalId":12572,"journal":{"name":"Frontiers in Neuroanatomy","volume":"19 ","pages":"1532900"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937143/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroanatomy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnana.2025.1532900","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The enteric nervous system (ENS) has garnered increasing scientific interest due to its pivotal role in digestive processes and its involvement in various gastrointestinal and central nervous system (CNS) disorders, including Crohn's disease, Parkinson's disease, and autism. Despite its significance, the ENS remains relatively underexplored by neurobiologists, primarily because its structure and function are less understood compared to the CNS. This review examines both pioneering methodologies that initially revealed the intricate layered structure of the ENS and recent advancements in studying its three-dimensional (3-D) organization, both in fixed samples and at a functional level, ex-vivo or in-vivo. Traditionally, imaging the ENS relied on histological techniques involving sequential tissue sectioning, staining, and microscopic imaging of single sections. However, this method has limitations representing the full complexity of the ENS's 3-D meshwork, which led to the development of more intact preparations, such as whole-mount preparation, as well as the use of volume imaging techniques. Advancements in 3-D imaging, particularly methods like spinning-disk confocal, 2-photon, and light-sheet microscopies, combined with tissue-clearing techniques, have revolutionized our understanding of the ENS's fine structure. These approaches offer detailed views of its cellular architecture, including interactions among various cell types, blood vessels, and lymphatic vessels. They have also enhanced our comprehension of ENS-related pathologies, such as inflammatory bowel disease, Hirschsprung's disease (HSCR), and the ENS's involvement in neurodegenerative disorders like Parkinson's (PD) and Alzheimer's diseases (AD). More recently, 2-photon or confocal in-vivo imaging, combined with transgenic approaches for calcium imaging, or confocal laser endomicroscopy, have opened new avenues for functional studies of the ENS. These methods enable real-time observation of enteric neuronal and glial activity and their interactions. While routinely used in CNS studies, their application to understanding local circuits and signals in the ENS is relatively recent and presents unique challenges, such as accommodating peristaltic movements. Advancements in 3-D in-vivo functional imaging are expected to significantly deepen our understanding of the ENS and its roles in gastrointestinal and neurological diseases, potentially leading to improved diagnostic and therapeutic strategies.

肠神经系统成像。
肠神经系统(ENS)由于其在消化过程中的关键作用以及参与各种胃肠道和中枢神经系统(CNS)疾病,包括克罗恩病、帕金森病和自闭症,已经获得了越来越多的科学兴趣。尽管具有重要意义,神经生物学家对ENS的研究相对较少,主要是因为与中枢神经系统相比,对其结构和功能的了解较少。本文回顾了最初揭示ENS复杂分层结构的开创性方法,以及在固定样本和功能水平(离体或体内)研究其三维(3-D)组织方面的最新进展。传统上,ENS成像依赖于组织学技术,包括顺序组织切片、染色和单个切片的显微成像。然而,这种方法的局限性代表了ENS三维网络的全部复杂性,这导致了更完整的制备的发展,如全贴装制备,以及体积成像技术的使用。三维成像技术的进步,特别是旋转盘共聚焦、双光子和薄片显微镜等方法,结合组织清除技术,彻底改变了我们对ENS精细结构的理解。这些方法提供了其细胞结构的详细视图,包括各种细胞类型,血管和淋巴管之间的相互作用。他们也增强了我们对神经系统系统相关病理的理解,如炎症性肠病、先天性巨结肠病(HSCR),以及神经系统系统参与神经退行性疾病,如帕金森病(PD)和阿尔茨海默病(AD)。最近,双光子或共聚焦体内成像,结合钙成像的转基因方法,或共聚焦激光内镜,为ens的功能研究开辟了新的途径。这些方法可以实时观察肠道神经元和胶质细胞的活动及其相互作用。虽然通常用于中枢神经系统研究,但它们在理解ENS局部电路和信号方面的应用相对较新,并且面临着独特的挑战,例如适应蠕动运动。三维体内功能成像技术的进步有望大大加深我们对ENS及其在胃肠道和神经系统疾病中的作用的理解,从而有可能改善诊断和治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Neuroanatomy
Frontiers in Neuroanatomy ANATOMY & MORPHOLOGY-NEUROSCIENCES
CiteScore
4.70
自引率
3.40%
发文量
122
审稿时长
>12 weeks
期刊介绍: Frontiers in Neuroanatomy publishes rigorously peer-reviewed research revealing important aspects of the anatomical organization of all nervous systems across all species. Specialty Chief Editor Javier DeFelipe at the Cajal Institute (CSIC) is supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信