Antibacterial potential of silver-selenium nanocomposites in mitigating fire blight disease in Pyrus communis L.

IF 4.1 2区 生物学 Q1 PLANT SCIENCES
Frontiers in Plant Science Pub Date : 2025-03-12 eCollection Date: 2025-01-01 DOI:10.3389/fpls.2025.1541498
Muhammad Imran, Muhammad Umer, Naveed Iqbal Raja, Fozia Abasi, Nimra Sardar, Ubaidur Rahman, Syed Azaz Mustafa Naqvi, Muhammad Yousuf Jat Baloch, Abdulwahed Fahad Alrefaei
{"title":"Antibacterial potential of silver-selenium nanocomposites in mitigating fire blight disease in <i>Pyrus communis</i> L.","authors":"Muhammad Imran, Muhammad Umer, Naveed Iqbal Raja, Fozia Abasi, Nimra Sardar, Ubaidur Rahman, Syed Azaz Mustafa Naqvi, Muhammad Yousuf Jat Baloch, Abdulwahed Fahad Alrefaei","doi":"10.3389/fpls.2025.1541498","DOIUrl":null,"url":null,"abstract":"<p><p><i>Pyrus communis</i> L. is a vital fruit tree known for its nutritional and economic importance. Thus, for humans, it is an essential element for their balanced nutritional diet, as it contains the major dietary fibers, vitamins, and minerals. All of these nutritionally important aspects decrease with the impact of disease fire blight. <i>Erwinia amylovora</i> is a causative agent of fire blight. This infection causes a considerable loss in the production of <i>Pyrus communis</i> L. Annually, approximately 50% of pear fruit in Pakistan is misplaced because of these illnesses. Therefore, we propose nanotechnology remediation to treat pear plants and obtain the desired yield. In this regard, an experiment was designed to treat infected plants with different concentrations of silver-selenium nanocomposites, which was based on a literature review that indicated the antimicrobial activities of silver and selenium nanoparticles. Silver-selenium nanocomposites were prepared using a green synthesis method, and their synthesis was confirmed using characterization techniques. The experiment was performed at a farmhouse in Chakwal district, Punjab, Pakistan. The experimental results showed increased morphological, physiological, and biochemical parameters. In this regard, the best treatment remained at 50 ppm for the Ag-Se nanocomposite, which improved the plant in different aspects. At the same time, they have improved fruit metrics, such as vitamin C, pH, and juice content. Thus, these results show a possible improvement in enhancing the resistance against fire blight by using green-synthesized Ag-Se NCs. Further studies are needed to understand fully the molecular mechanisms and actions of <i>Pyrus communis</i> L. in treating fire blight disease and to establish the optimal treatment plan.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1541498"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11936962/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2025.1541498","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Pyrus communis L. is a vital fruit tree known for its nutritional and economic importance. Thus, for humans, it is an essential element for their balanced nutritional diet, as it contains the major dietary fibers, vitamins, and minerals. All of these nutritionally important aspects decrease with the impact of disease fire blight. Erwinia amylovora is a causative agent of fire blight. This infection causes a considerable loss in the production of Pyrus communis L. Annually, approximately 50% of pear fruit in Pakistan is misplaced because of these illnesses. Therefore, we propose nanotechnology remediation to treat pear plants and obtain the desired yield. In this regard, an experiment was designed to treat infected plants with different concentrations of silver-selenium nanocomposites, which was based on a literature review that indicated the antimicrobial activities of silver and selenium nanoparticles. Silver-selenium nanocomposites were prepared using a green synthesis method, and their synthesis was confirmed using characterization techniques. The experiment was performed at a farmhouse in Chakwal district, Punjab, Pakistan. The experimental results showed increased morphological, physiological, and biochemical parameters. In this regard, the best treatment remained at 50 ppm for the Ag-Se nanocomposite, which improved the plant in different aspects. At the same time, they have improved fruit metrics, such as vitamin C, pH, and juice content. Thus, these results show a possible improvement in enhancing the resistance against fire blight by using green-synthesized Ag-Se NCs. Further studies are needed to understand fully the molecular mechanisms and actions of Pyrus communis L. in treating fire blight disease and to establish the optimal treatment plan.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Plant Science
Frontiers in Plant Science PLANT SCIENCES-
CiteScore
7.30
自引率
14.30%
发文量
4844
审稿时长
14 weeks
期刊介绍: In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches. Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信