A universal model for predicting coronary artery lesions in subgroups of kawasaki disease in China: based on cluster analysis.

IF 2.8 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS
Frontiers in Cardiovascular Medicine Pub Date : 2025-03-12 eCollection Date: 2025-01-01 DOI:10.3389/fcvm.2025.1532768
Chuxiong Gong, Feng Li, Zhongjian Su, Yanan Fu, Xing Zhang, Qinhong Li, Xiaomei Liu, Lili Deng
{"title":"A universal model for predicting coronary artery lesions in subgroups of kawasaki disease in China: based on cluster analysis.","authors":"Chuxiong Gong, Feng Li, Zhongjian Su, Yanan Fu, Xing Zhang, Qinhong Li, Xiaomei Liu, Lili Deng","doi":"10.3389/fcvm.2025.1532768","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Coronary artery lesions (CAL) represent the most severe complication of Kawasaki disease (KD). Currently, there is no standardized method for predicting CAL in KD, and the predictive effectiveness varies among different KD patients. Therefore, our study aims to establish distinct predictive models for CAL complications based on the characteristics of different clusters.</p><p><strong>Methods: </strong>We employed principal component clustering analysis to categorize 1,795 KD patients into different clustered subgroups. We summarized the characteristics of each cluster and compared the occurrence of CAL components within each cluster. Additionally, we utilized LASSO analysis to further screen for factors associated with CAL. We then constructed CAL predictive models for each subgroup using the selected factors and conducted preliminary validation and assessment.</p><p><strong>Results: </strong>Through PCA analysis, we identified three clusters in KD. We developed predictive models for each of the three clusters. The AUCs of the three predictive models were 0.789 (95% CI: 0.732-0.845), 0.894 (95% CI: 0.856-0.932), and 0.773 (95% CI: 0.727-0.819), respectively, all demonstrating good predictive performance.</p><p><strong>Conclusion: </strong>Our study identified the existence of three clusters among KD patients. We developed KD-related CAL predictive models with good predictive performance for each cluster with distinct characteristics. This provides reference for individualized precision treatment of KD patients and aids in the health management of coronary arteries in KD.</p>","PeriodicalId":12414,"journal":{"name":"Frontiers in Cardiovascular Medicine","volume":"12 ","pages":"1532768"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11936964/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cardiovascular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fcvm.2025.1532768","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Coronary artery lesions (CAL) represent the most severe complication of Kawasaki disease (KD). Currently, there is no standardized method for predicting CAL in KD, and the predictive effectiveness varies among different KD patients. Therefore, our study aims to establish distinct predictive models for CAL complications based on the characteristics of different clusters.

Methods: We employed principal component clustering analysis to categorize 1,795 KD patients into different clustered subgroups. We summarized the characteristics of each cluster and compared the occurrence of CAL components within each cluster. Additionally, we utilized LASSO analysis to further screen for factors associated with CAL. We then constructed CAL predictive models for each subgroup using the selected factors and conducted preliminary validation and assessment.

Results: Through PCA analysis, we identified three clusters in KD. We developed predictive models for each of the three clusters. The AUCs of the three predictive models were 0.789 (95% CI: 0.732-0.845), 0.894 (95% CI: 0.856-0.932), and 0.773 (95% CI: 0.727-0.819), respectively, all demonstrating good predictive performance.

Conclusion: Our study identified the existence of three clusters among KD patients. We developed KD-related CAL predictive models with good predictive performance for each cluster with distinct characteristics. This provides reference for individualized precision treatment of KD patients and aids in the health management of coronary arteries in KD.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Cardiovascular Medicine
Frontiers in Cardiovascular Medicine Medicine-Cardiology and Cardiovascular Medicine
CiteScore
3.80
自引率
11.10%
发文量
3529
审稿时长
14 weeks
期刊介绍: Frontiers? Which frontiers? Where exactly are the frontiers of cardiovascular medicine? And who should be defining these frontiers? At Frontiers in Cardiovascular Medicine we believe it is worth being curious to foresee and explore beyond the current frontiers. In other words, we would like, through the articles published by our community journal Frontiers in Cardiovascular Medicine, to anticipate the future of cardiovascular medicine, and thus better prevent cardiovascular disorders and improve therapeutic options and outcomes of our patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信