YO-AFD: an improved YOLOv8-based deep learning approach for rapid and accurate apple flower detection.

IF 4.1 2区 生物学 Q1 PLANT SCIENCES
Frontiers in Plant Science Pub Date : 2025-03-12 eCollection Date: 2025-01-01 DOI:10.3389/fpls.2025.1541266
Dandan Wang, Huaibo Song, Bo Wang
{"title":"YO-AFD: an improved YOLOv8-based deep learning approach for rapid and accurate apple flower detection.","authors":"Dandan Wang, Huaibo Song, Bo Wang","doi":"10.3389/fpls.2025.1541266","DOIUrl":null,"url":null,"abstract":"<p><p>The timely and accurate detection of apple flowers is crucial for assessing the growth status of fruit trees, predicting peak blooming dates, and early estimating apple yields. However, challenges such as variable lighting conditions, complex growth environments, occlusion of apple flowers, clustered flowers and significant morphological variations, impede precise detection. To overcome these challenges, an improved YO-AFD method based on YOLOv8 for apple flower detection was proposed. First, to enable adaptive focus on features across different scales, a new attention module, ISAT, which integrated the Inverted Residual Mobile Block (IRMB) with the Spatial and Channel Synergistic Attention (SCSA) module was designed. This module was then incorporated into the C2f module within the network's neck, forming the C2f-IS module, to enhance the model's ability to extract critical features and fuse features across scales. Additionally, to balance attention between simple and challenging targets, a regression loss function based on Focaler Intersection over Union (FIoU) was used for loss function calculation. Experimental results showed that the YO-AFD model accurately detected both simple and challenging apple flowers, including small, occluded, and morphologically diverse flowers. The YO-AFD model achieved an F1 score of 88.6%, mAP50 of 94.1%, and mAP50-95 of 55.3%, with a model size of 6.5 MB and an average detection speed of 5.3 ms per image. The proposed YO-AFD method outperforms five comparative models, demonstrating its effectiveness and accuracy in real-time apple flower detection. With its lightweight design and high accuracy, this method offers a promising solution for developing portable apple flower detection systems.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1541266"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11936985/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2025.1541266","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The timely and accurate detection of apple flowers is crucial for assessing the growth status of fruit trees, predicting peak blooming dates, and early estimating apple yields. However, challenges such as variable lighting conditions, complex growth environments, occlusion of apple flowers, clustered flowers and significant morphological variations, impede precise detection. To overcome these challenges, an improved YO-AFD method based on YOLOv8 for apple flower detection was proposed. First, to enable adaptive focus on features across different scales, a new attention module, ISAT, which integrated the Inverted Residual Mobile Block (IRMB) with the Spatial and Channel Synergistic Attention (SCSA) module was designed. This module was then incorporated into the C2f module within the network's neck, forming the C2f-IS module, to enhance the model's ability to extract critical features and fuse features across scales. Additionally, to balance attention between simple and challenging targets, a regression loss function based on Focaler Intersection over Union (FIoU) was used for loss function calculation. Experimental results showed that the YO-AFD model accurately detected both simple and challenging apple flowers, including small, occluded, and morphologically diverse flowers. The YO-AFD model achieved an F1 score of 88.6%, mAP50 of 94.1%, and mAP50-95 of 55.3%, with a model size of 6.5 MB and an average detection speed of 5.3 ms per image. The proposed YO-AFD method outperforms five comparative models, demonstrating its effectiveness and accuracy in real-time apple flower detection. With its lightweight design and high accuracy, this method offers a promising solution for developing portable apple flower detection systems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Plant Science
Frontiers in Plant Science PLANT SCIENCES-
CiteScore
7.30
自引率
14.30%
发文量
4844
审稿时长
14 weeks
期刊介绍: In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches. Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信