AD-Diff: enhancing Alzheimer's disease prediction accuracy through multimodal fusion.

IF 2.1 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Frontiers in Computational Neuroscience Pub Date : 2025-03-12 eCollection Date: 2025-01-01 DOI:10.3389/fncom.2025.1484540
Lei Han
{"title":"AD-Diff: enhancing Alzheimer's disease prediction accuracy through multimodal fusion.","authors":"Lei Han","doi":"10.3389/fncom.2025.1484540","DOIUrl":null,"url":null,"abstract":"<p><p>Early prediction of Alzheimer's disease (AD) is crucial to improving patient quality of life and treatment outcomes. However, current predictive methods face challenges such as insufficient multimodal information integration and the high cost of PET image acquisition, which limit their effectiveness in practical applications. To address these issues, this paper proposes an innovative model, AD-Diff. This model significantly improves AD prediction accuracy by integrating PET images generated through a diffusion process with cognitive scale data and other modalities. Specifically, the AD-Diff model consists of two core components: the ADdiffusion module and the multimodal Mamba Classifier. The ADdiffusion module uses a 3D diffusion process to generate high-quality PET images, which are then fused with MRI images and tabular data to provide input for the Multimodal Mamba Classifier. Experimental results on the OASIS and ADNI datasets demonstrate that the AD-Diff model performs exceptionally well in both long-term and short-term AD prediction tasks, significantly improving prediction accuracy and reliability. These results highlight the significant advantages of the AD-Diff model in handling complex medical image data and multimodal information, providing an effective tool for the early diagnosis and personalized treatment of Alzheimer's disease.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"19 ","pages":"1484540"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937103/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2025.1484540","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Early prediction of Alzheimer's disease (AD) is crucial to improving patient quality of life and treatment outcomes. However, current predictive methods face challenges such as insufficient multimodal information integration and the high cost of PET image acquisition, which limit their effectiveness in practical applications. To address these issues, this paper proposes an innovative model, AD-Diff. This model significantly improves AD prediction accuracy by integrating PET images generated through a diffusion process with cognitive scale data and other modalities. Specifically, the AD-Diff model consists of two core components: the ADdiffusion module and the multimodal Mamba Classifier. The ADdiffusion module uses a 3D diffusion process to generate high-quality PET images, which are then fused with MRI images and tabular data to provide input for the Multimodal Mamba Classifier. Experimental results on the OASIS and ADNI datasets demonstrate that the AD-Diff model performs exceptionally well in both long-term and short-term AD prediction tasks, significantly improving prediction accuracy and reliability. These results highlight the significant advantages of the AD-Diff model in handling complex medical image data and multimodal information, providing an effective tool for the early diagnosis and personalized treatment of Alzheimer's disease.

AD-Diff:通过多模态融合提高阿尔茨海默病预测准确性。
阿尔茨海默病(AD)的早期预测对改善患者的生活质量和治疗结果至关重要。然而,目前的预测方法面临着多模态信息集成不足和PET图像采集成本高等挑战,限制了其在实际应用中的有效性。为了解决这些问题,本文提出了一种创新的AD-Diff模型。该模型通过将扩散过程生成的PET图像与认知尺度数据和其他模式相结合,显著提高了AD的预测精度。具体来说,AD-Diff模型由两个核心组件组成:ADdiffusion模块和多模态曼巴分类器。ADdiffusion模块使用3D扩散过程生成高质量的PET图像,然后将其与MRI图像和表格数据融合,为Multimodal Mamba Classifier提供输入。在OASIS和ADNI数据集上的实验结果表明,AD- diff模型在长期和短期AD预测任务中都表现优异,显著提高了预测精度和可靠性。这些结果突出了AD-Diff模型在处理复杂医学图像数据和多模态信息方面的显著优势,为阿尔茨海默病的早期诊断和个性化治疗提供了有效的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Computational Neuroscience
Frontiers in Computational Neuroscience MATHEMATICAL & COMPUTATIONAL BIOLOGY-NEUROSCIENCES
CiteScore
5.30
自引率
3.10%
发文量
166
审稿时长
6-12 weeks
期刊介绍: Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions. Also: comp neuro
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信