The role of intestinal homeostasis in sevoflurane-induced myelin development and cognitive impairment in neonatal mice.

IF 4.6 2区 医学 Q2 IMMUNOLOGY
Frontiers in Cellular and Infection Microbiology Pub Date : 2025-03-12 eCollection Date: 2025-01-01 DOI:10.3389/fcimb.2025.1541757
Chang Liu, Jinjie Li, Ruizhu Liu, Guoqing Zhao
{"title":"The role of intestinal homeostasis in sevoflurane-induced myelin development and cognitive impairment in neonatal mice.","authors":"Chang Liu, Jinjie Li, Ruizhu Liu, Guoqing Zhao","doi":"10.3389/fcimb.2025.1541757","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Inhalational anesthetic sevoflurane is commonly used in pediatric anesthesia. Multiple exposures to sevoflurane in early postnatal life have been associated with long-term abnormalities in myelin development and cognitive and memory impairments, although the underlying mechanisms remain incompletely elucidated. Disruption of gut microbiota is recognized as an important contributor to neurological diseases. Here, we explore the potential mechanisms underlying the abnormal myelin development induced by multiple sevoflurane exposures in neonatal rats by analyzing gut homeostasis.</p><p><strong>Methods: </strong>Six-day-old (P6) C57BL/6 mice were exposed to 3% sevoflurane for 2 hours per day for three consecutive days. Mice exposed to a mixture of 60% nitrogen and oxygen under the same conditions and duration served as controls. Behavioral tests were conducted between P32 and P42. At P9 (24 hours after the last sevoflurane exposure) and P42 (after the completion of behavioral tests), intestinal and brain examinations were performed to investigate the effects of sevoflurane exposure during the lactation and adolescent periods on gut homeostasis and myelin development in mice. Subsequently, the ameliorative effects of butyrate supplementation on sevoflurane-induced abnormalities in myelin development and cognitive and memory impairments were observed.</p><p><strong>Results: </strong>After repeated exposure to sevoflurane, neonatal mice developed persistent gut microbiota imbalance accompanied by a decrease in short-chain fatty acids. Short-term intestinal inflammation emerged, with damage to the mucus layer and barrier function. In the hippocampus and prefrontal cortex, the expression of genes and transcription factors related to oligodendrocyte differentiation and myelin development was significantly affected, and these changes persisted even after the exposure ended. There was a reduction in proteins associated with oligodendrocytes and myelin formation, which had a certain impact on memory and cognitive behavior. This study also explored the potential connections between microbiota, metabolism, the gut, the brain, and behavior. Timely supplementation with butyrate could effectively reverse these changes, indicating that gut homeostasis is crucial for brain neurodevelopment.</p><p><strong>Conclusion: </strong>Multiple exposures to sevoflurane in neonatal mice disrupt gut homeostasis and affect oligodendrocyte differentiation and myelin development in the hippocampus and prefrontal cortex, inducing cognitive and memory impairments. Supplementation with butyrate can alleviate these changes.</p>","PeriodicalId":12458,"journal":{"name":"Frontiers in Cellular and Infection Microbiology","volume":"15 ","pages":"1541757"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11936920/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cellular and Infection Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fcimb.2025.1541757","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Inhalational anesthetic sevoflurane is commonly used in pediatric anesthesia. Multiple exposures to sevoflurane in early postnatal life have been associated with long-term abnormalities in myelin development and cognitive and memory impairments, although the underlying mechanisms remain incompletely elucidated. Disruption of gut microbiota is recognized as an important contributor to neurological diseases. Here, we explore the potential mechanisms underlying the abnormal myelin development induced by multiple sevoflurane exposures in neonatal rats by analyzing gut homeostasis.

Methods: Six-day-old (P6) C57BL/6 mice were exposed to 3% sevoflurane for 2 hours per day for three consecutive days. Mice exposed to a mixture of 60% nitrogen and oxygen under the same conditions and duration served as controls. Behavioral tests were conducted between P32 and P42. At P9 (24 hours after the last sevoflurane exposure) and P42 (after the completion of behavioral tests), intestinal and brain examinations were performed to investigate the effects of sevoflurane exposure during the lactation and adolescent periods on gut homeostasis and myelin development in mice. Subsequently, the ameliorative effects of butyrate supplementation on sevoflurane-induced abnormalities in myelin development and cognitive and memory impairments were observed.

Results: After repeated exposure to sevoflurane, neonatal mice developed persistent gut microbiota imbalance accompanied by a decrease in short-chain fatty acids. Short-term intestinal inflammation emerged, with damage to the mucus layer and barrier function. In the hippocampus and prefrontal cortex, the expression of genes and transcription factors related to oligodendrocyte differentiation and myelin development was significantly affected, and these changes persisted even after the exposure ended. There was a reduction in proteins associated with oligodendrocytes and myelin formation, which had a certain impact on memory and cognitive behavior. This study also explored the potential connections between microbiota, metabolism, the gut, the brain, and behavior. Timely supplementation with butyrate could effectively reverse these changes, indicating that gut homeostasis is crucial for brain neurodevelopment.

Conclusion: Multiple exposures to sevoflurane in neonatal mice disrupt gut homeostasis and affect oligodendrocyte differentiation and myelin development in the hippocampus and prefrontal cortex, inducing cognitive and memory impairments. Supplementation with butyrate can alleviate these changes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
7.00%
发文量
1817
审稿时长
14 weeks
期刊介绍: Frontiers in Cellular and Infection Microbiology is a leading specialty journal, publishing rigorously peer-reviewed research across all pathogenic microorganisms and their interaction with their hosts. Chief Editor Yousef Abu Kwaik, University of Louisville is supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide. Frontiers in Cellular and Infection Microbiology includes research on bacteria, fungi, parasites, viruses, endosymbionts, prions and all microbial pathogens as well as the microbiota and its effect on health and disease in various hosts. The research approaches include molecular microbiology, cellular microbiology, gene regulation, proteomics, signal transduction, pathogenic evolution, genomics, structural biology, and virulence factors as well as model hosts. Areas of research to counteract infectious agents by the host include the host innate and adaptive immune responses as well as metabolic restrictions to various pathogenic microorganisms, vaccine design and development against various pathogenic microorganisms, and the mechanisms of antibiotic resistance and its countermeasures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信