Carol Ren Lin, Reynolds Kwame Ablordeppey, Alexandra Benavente-Perez
{"title":"Sustained Experimental Myopia Exacerbates the Effect of Eye Growth on Retinal Ganglion Cell Density and Function.","authors":"Carol Ren Lin, Reynolds Kwame Ablordeppey, Alexandra Benavente-Perez","doi":"10.3390/ijms26062824","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study is to describe the effect that sustained myopic eye growth has on the cellular distribution and function of retinal ganglion cells as myopia progresses over time. Ganglion cell density and the photopic negative response (PhNR) were assessed using immunochemistry and electroretinography (ERG), respectively, on twelve common marmoset eyes (<i>Callithrix jacchus</i>). Myopia was induced in six eyes using negative defocus (three eyes from 2 to 6 months of age, 6-month-old myopes; three eyes from 2 to 12 months of age, 12-month-old myopes). These six treated eyes were compared to six age-matched control eyes. Marmosets induced with myopia for four months showed a reduced pan-retinal ganglion cell density, which continued to decrease in the peripapillary area of marmosets induced with sustained myopia for ten months. Ganglion cell density decreased as a function of axial length. Full-field ERGs revealed a dampening of the PhNR in the 12-month-old, but not 6-month-old myopes. The myopic changes observed in ganglion cell density and retinal function suggest a reorganization of the ganglion cell template during myopia development and progression that increases over time with sustained myopic eye growth and translates into functional alterations at later stages of myopia development in the absence of degenerative changes. It remains unknown whether these changes positively or negatively impact retinal function and health.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 6","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943290/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26062824","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this study is to describe the effect that sustained myopic eye growth has on the cellular distribution and function of retinal ganglion cells as myopia progresses over time. Ganglion cell density and the photopic negative response (PhNR) were assessed using immunochemistry and electroretinography (ERG), respectively, on twelve common marmoset eyes (Callithrix jacchus). Myopia was induced in six eyes using negative defocus (three eyes from 2 to 6 months of age, 6-month-old myopes; three eyes from 2 to 12 months of age, 12-month-old myopes). These six treated eyes were compared to six age-matched control eyes. Marmosets induced with myopia for four months showed a reduced pan-retinal ganglion cell density, which continued to decrease in the peripapillary area of marmosets induced with sustained myopia for ten months. Ganglion cell density decreased as a function of axial length. Full-field ERGs revealed a dampening of the PhNR in the 12-month-old, but not 6-month-old myopes. The myopic changes observed in ganglion cell density and retinal function suggest a reorganization of the ganglion cell template during myopia development and progression that increases over time with sustained myopic eye growth and translates into functional alterations at later stages of myopia development in the absence of degenerative changes. It remains unknown whether these changes positively or negatively impact retinal function and health.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).