Multimodal diagnosis of Alzheimer's disease based on resting-state electroencephalography and structural magnetic resonance imaging.

IF 3.2 3区 医学 Q2 PHYSIOLOGY
Frontiers in Physiology Pub Date : 2025-03-12 eCollection Date: 2025-01-01 DOI:10.3389/fphys.2025.1515881
Junxiu Liu, Shangxiao Wu, Qiang Fu, Xiwen Luo, Yuling Luo, Sheng Qin, Yiting Huang, Zhaohui Chen
{"title":"Multimodal diagnosis of Alzheimer's disease based on resting-state electroencephalography and structural magnetic resonance imaging.","authors":"Junxiu Liu, Shangxiao Wu, Qiang Fu, Xiwen Luo, Yuling Luo, Sheng Qin, Yiting Huang, Zhaohui Chen","doi":"10.3389/fphys.2025.1515881","DOIUrl":null,"url":null,"abstract":"<p><p>Multimodal diagnostic methods for Alzheimer's disease (AD) have demonstrated remarkable performance. However, the inclusion of electroencephalography (EEG) in such multimodal studies has been relatively limited. Moreover, most multimodal studies on AD use convolutional neural networks (CNNs) to extract features from different modalities and perform fusion classification. Regrettably, this approach often lacks collaboration and fails to effectively enhance the representation ability of features. To address this issue and explore the collaborative relationship among multimodal EEG, this paper proposes a multimodal AD diagnosis model based on resting-state EEG and structural magnetic resonance imaging (sMRI). Specifically, this work designs corresponding feature extraction models for EEG and sMRI modalities to enhance the capability of extracting modality-specific features. Additionally, a multimodal joint attention mechanism (MJA) is developed to address the issue of independent modalities. The MJA promotes cooperation and collaboration between the two modalities, thereby enhancing the representation ability of multimodal fusion. Furthermore, a random forest classifier is introduced to enhance the classification ability. The diagnostic accuracy of the proposed model can achieve 94.7%, marking a noteworthy accomplishment. This research stands as the inaugural exploration into the amalgamation of deep learning and EEG multimodality for AD diagnosis. Concurrently, this work strives to bolster the use of EEG in multimodal AD research, thereby positioning itself as a hopeful prospect for future advancements in AD diagnosis.</p>","PeriodicalId":12477,"journal":{"name":"Frontiers in Physiology","volume":"16 ","pages":"1515881"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937600/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fphys.2025.1515881","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Multimodal diagnostic methods for Alzheimer's disease (AD) have demonstrated remarkable performance. However, the inclusion of electroencephalography (EEG) in such multimodal studies has been relatively limited. Moreover, most multimodal studies on AD use convolutional neural networks (CNNs) to extract features from different modalities and perform fusion classification. Regrettably, this approach often lacks collaboration and fails to effectively enhance the representation ability of features. To address this issue and explore the collaborative relationship among multimodal EEG, this paper proposes a multimodal AD diagnosis model based on resting-state EEG and structural magnetic resonance imaging (sMRI). Specifically, this work designs corresponding feature extraction models for EEG and sMRI modalities to enhance the capability of extracting modality-specific features. Additionally, a multimodal joint attention mechanism (MJA) is developed to address the issue of independent modalities. The MJA promotes cooperation and collaboration between the two modalities, thereby enhancing the representation ability of multimodal fusion. Furthermore, a random forest classifier is introduced to enhance the classification ability. The diagnostic accuracy of the proposed model can achieve 94.7%, marking a noteworthy accomplishment. This research stands as the inaugural exploration into the amalgamation of deep learning and EEG multimodality for AD diagnosis. Concurrently, this work strives to bolster the use of EEG in multimodal AD research, thereby positioning itself as a hopeful prospect for future advancements in AD diagnosis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
5.00%
发文量
2608
审稿时长
14 weeks
期刊介绍: Frontiers in Physiology is a leading journal in its field, publishing rigorously peer-reviewed research on the physiology of living systems, from the subcellular and molecular domains to the intact organism, and its interaction with the environment. Field Chief Editor George E. Billman at the Ohio State University Columbus is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信