{"title":"Multimodal diagnosis of Alzheimer's disease based on resting-state electroencephalography and structural magnetic resonance imaging.","authors":"Junxiu Liu, Shangxiao Wu, Qiang Fu, Xiwen Luo, Yuling Luo, Sheng Qin, Yiting Huang, Zhaohui Chen","doi":"10.3389/fphys.2025.1515881","DOIUrl":null,"url":null,"abstract":"<p><p>Multimodal diagnostic methods for Alzheimer's disease (AD) have demonstrated remarkable performance. However, the inclusion of electroencephalography (EEG) in such multimodal studies has been relatively limited. Moreover, most multimodal studies on AD use convolutional neural networks (CNNs) to extract features from different modalities and perform fusion classification. Regrettably, this approach often lacks collaboration and fails to effectively enhance the representation ability of features. To address this issue and explore the collaborative relationship among multimodal EEG, this paper proposes a multimodal AD diagnosis model based on resting-state EEG and structural magnetic resonance imaging (sMRI). Specifically, this work designs corresponding feature extraction models for EEG and sMRI modalities to enhance the capability of extracting modality-specific features. Additionally, a multimodal joint attention mechanism (MJA) is developed to address the issue of independent modalities. The MJA promotes cooperation and collaboration between the two modalities, thereby enhancing the representation ability of multimodal fusion. Furthermore, a random forest classifier is introduced to enhance the classification ability. The diagnostic accuracy of the proposed model can achieve 94.7%, marking a noteworthy accomplishment. This research stands as the inaugural exploration into the amalgamation of deep learning and EEG multimodality for AD diagnosis. Concurrently, this work strives to bolster the use of EEG in multimodal AD research, thereby positioning itself as a hopeful prospect for future advancements in AD diagnosis.</p>","PeriodicalId":12477,"journal":{"name":"Frontiers in Physiology","volume":"16 ","pages":"1515881"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937600/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fphys.2025.1515881","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Multimodal diagnostic methods for Alzheimer's disease (AD) have demonstrated remarkable performance. However, the inclusion of electroencephalography (EEG) in such multimodal studies has been relatively limited. Moreover, most multimodal studies on AD use convolutional neural networks (CNNs) to extract features from different modalities and perform fusion classification. Regrettably, this approach often lacks collaboration and fails to effectively enhance the representation ability of features. To address this issue and explore the collaborative relationship among multimodal EEG, this paper proposes a multimodal AD diagnosis model based on resting-state EEG and structural magnetic resonance imaging (sMRI). Specifically, this work designs corresponding feature extraction models for EEG and sMRI modalities to enhance the capability of extracting modality-specific features. Additionally, a multimodal joint attention mechanism (MJA) is developed to address the issue of independent modalities. The MJA promotes cooperation and collaboration between the two modalities, thereby enhancing the representation ability of multimodal fusion. Furthermore, a random forest classifier is introduced to enhance the classification ability. The diagnostic accuracy of the proposed model can achieve 94.7%, marking a noteworthy accomplishment. This research stands as the inaugural exploration into the amalgamation of deep learning and EEG multimodality for AD diagnosis. Concurrently, this work strives to bolster the use of EEG in multimodal AD research, thereby positioning itself as a hopeful prospect for future advancements in AD diagnosis.
期刊介绍:
Frontiers in Physiology is a leading journal in its field, publishing rigorously peer-reviewed research on the physiology of living systems, from the subcellular and molecular domains to the intact organism, and its interaction with the environment. Field Chief Editor George E. Billman at the Ohio State University Columbus is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.