Unique microbial communities in ancient volcanic ash layers within deep marine sediments are structured by the composition of iron phases.

IF 4 2区 生物学 Q2 MICROBIOLOGY
Frontiers in Microbiology Pub Date : 2025-03-12 eCollection Date: 2025-01-01 DOI:10.3389/fmicb.2025.1526969
Sönke Rolfes, Jack Longman, Katharina Pahnke, Bert Engelen
{"title":"Unique microbial communities in ancient volcanic ash layers within deep marine sediments are structured by the composition of iron phases.","authors":"Sönke Rolfes, Jack Longman, Katharina Pahnke, Bert Engelen","doi":"10.3389/fmicb.2025.1526969","DOIUrl":null,"url":null,"abstract":"<p><p>Much of the marine sedimentary environment is affected by the deposition of tephra, the explosive products of volcanic eruptions. These tephra layers' geochemical and physical properties often differ substantially from those of the surrounding sediment, forming an extreme carbon-lean environment within the anoxic deep biosphere. Despite this, evidence suggests tephra layers harbor diverse and abundant microbial communities. While little is known about the composition of these communities and even less about their life modes, there is evidence indicating that iron (Fe) plays a vital role for these microorganisms. Here, we aim to link differences in the iron content of tephra layers and surrounding sediments with changes within microbial communities. We combined next-generation sequencing of 16S rRNA genes with geochemical analyses of Fe phases preserved in ancient tephra and sediments recovered from the Norwegian Margin during Expedition 396 of the International Ocean Discovery Program (IODP). In these samples, basaltic tephra contained nearly double Fe<sub>total</sub> as surrounding sediments, with the majority hosted in \"reducible\" Fe(III) oxides, whilst sedimentary Fe is primarily in \"easily reducible\" Fe(III) oxides. Basaltic tephra harbored distinct microbial communities that differed from the surrounding sediment in composition and predicted metabolic properties. These predictions suggest a higher potential for the assimilatory use of more complex Fe(III) sources in tephra, indicating the microbes are able to exploit the \"reducible\" Fe(III) found in high quantities in these layers. Our findings confirm the few previous studies that have suggested distinct microbial communities to occur in marine tephra layers. Deciphering the role of iron for indigenous microorganisms hints at how life might flourish in this extreme environment. This has implications for understanding tephra layers as a ubiquitous component of the deep biosphere.</p>","PeriodicalId":12466,"journal":{"name":"Frontiers in Microbiology","volume":"16 ","pages":"1526969"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937008/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmicb.2025.1526969","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Much of the marine sedimentary environment is affected by the deposition of tephra, the explosive products of volcanic eruptions. These tephra layers' geochemical and physical properties often differ substantially from those of the surrounding sediment, forming an extreme carbon-lean environment within the anoxic deep biosphere. Despite this, evidence suggests tephra layers harbor diverse and abundant microbial communities. While little is known about the composition of these communities and even less about their life modes, there is evidence indicating that iron (Fe) plays a vital role for these microorganisms. Here, we aim to link differences in the iron content of tephra layers and surrounding sediments with changes within microbial communities. We combined next-generation sequencing of 16S rRNA genes with geochemical analyses of Fe phases preserved in ancient tephra and sediments recovered from the Norwegian Margin during Expedition 396 of the International Ocean Discovery Program (IODP). In these samples, basaltic tephra contained nearly double Fetotal as surrounding sediments, with the majority hosted in "reducible" Fe(III) oxides, whilst sedimentary Fe is primarily in "easily reducible" Fe(III) oxides. Basaltic tephra harbored distinct microbial communities that differed from the surrounding sediment in composition and predicted metabolic properties. These predictions suggest a higher potential for the assimilatory use of more complex Fe(III) sources in tephra, indicating the microbes are able to exploit the "reducible" Fe(III) found in high quantities in these layers. Our findings confirm the few previous studies that have suggested distinct microbial communities to occur in marine tephra layers. Deciphering the role of iron for indigenous microorganisms hints at how life might flourish in this extreme environment. This has implications for understanding tephra layers as a ubiquitous component of the deep biosphere.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
9.60%
发文量
4837
审稿时长
14 weeks
期刊介绍: Frontiers in Microbiology is a leading journal in its field, publishing rigorously peer-reviewed research across the entire spectrum of microbiology. Field Chief Editor Martin G. Klotz at Washington State University is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信