{"title":"Piezoelectric poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) microspheres for collagen regeneration and skin rejuvenation.","authors":"Zeyu Fu, Yingwei Qu, Yinghao Wu, Yuan Xu, Hengdi Zhang, Yaozong Tang, Ziying Jin, Jia Zhao, Chang Tan","doi":"10.3389/fbioe.2025.1554825","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Skin aging is an inevitable physiological process driven by factors like cellular senescence, ultraviolet radiation (UV) radiation, and environmental pollutants. A key feature is the accelerated collagen degradation in the dermal extracellular matrix, leading to visible signs such as sagging, wrinkles, and hyperpigmentation. Traditional fillers, such as hyaluronic acid and collagen-based fillers, offer only temporary volume enhancement without stimulating collagen regeneration. Studies have shown that electrical signals generated by piezoelectric materials can promote tissue regeneration.</p><p><strong>Methods: </strong>This study explored the potential of piezoelectric PHBHHx microspheres as an innovative skin filler for enhancing collagen regeneration and improving maxillofacial aesthetics, with the aid of low-intensity pulsed ultrasound (LIPUS) stimulation. A comprehensive characterizations of the piezoelectric PHBHHx microspheres were conducted, and their potential to stimulate collagen regeneration was assessed using a subcutaneous injection model in New Zealand white rabbits.</p><p><strong>Results: </strong>The results indicated that PHBHHx microspheres exhibited stable degradation properties, great piezoelectric properties and excellent biocompatibility. Moreover, when stimulated by LIPUS, the collagen-regenerating effect of PHBHHx microspheres was further enhanced, histological analysis revealed a denser and more organized collagen structures in LIPUS-stimulated PHBHHx group.</p><p><strong>Discussion: </strong>These findings highlight the potential of PHBHHx microspheres as an advanced biomaterial for applications in aesthetic medicine, particularly in promoting collagen regeneration and enhancing skin rejuvenation.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1554825"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937035/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1554825","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Skin aging is an inevitable physiological process driven by factors like cellular senescence, ultraviolet radiation (UV) radiation, and environmental pollutants. A key feature is the accelerated collagen degradation in the dermal extracellular matrix, leading to visible signs such as sagging, wrinkles, and hyperpigmentation. Traditional fillers, such as hyaluronic acid and collagen-based fillers, offer only temporary volume enhancement without stimulating collagen regeneration. Studies have shown that electrical signals generated by piezoelectric materials can promote tissue regeneration.
Methods: This study explored the potential of piezoelectric PHBHHx microspheres as an innovative skin filler for enhancing collagen regeneration and improving maxillofacial aesthetics, with the aid of low-intensity pulsed ultrasound (LIPUS) stimulation. A comprehensive characterizations of the piezoelectric PHBHHx microspheres were conducted, and their potential to stimulate collagen regeneration was assessed using a subcutaneous injection model in New Zealand white rabbits.
Results: The results indicated that PHBHHx microspheres exhibited stable degradation properties, great piezoelectric properties and excellent biocompatibility. Moreover, when stimulated by LIPUS, the collagen-regenerating effect of PHBHHx microspheres was further enhanced, histological analysis revealed a denser and more organized collagen structures in LIPUS-stimulated PHBHHx group.
Discussion: These findings highlight the potential of PHBHHx microspheres as an advanced biomaterial for applications in aesthetic medicine, particularly in promoting collagen regeneration and enhancing skin rejuvenation.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.