{"title":"Neurobehavioral Disorders and Cognitive Impairment in Methcathinone Exposure: A Systematic Review of Literature.","authors":"Yihan Wang, Ning Wang, Shuquan Zhao","doi":"10.2174/011570159X387589250318041633","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Methcathinone, a synthetic cathinone derivative similar to amphetamine, has transitioned from a 1920s ephedrine precursor and Soviet-era antidepressant to a recreationally used substance since the 1970s-1980s, raising public health concerns due to its addiction potential and neurotoxicity-related health risks.</p><p><strong>Objective: </strong>This review comprehensively analyzes methcathinone's impact on adult offspring, synthesizing recent advancements and critiquing literature to pinpoint key findings, challenges, and future research directions.</p><p><strong>Method: </strong>The systematic review adhered to PRISMA guidelines and encompassed case series, prospective and retrospective studies, as well as short communications published in English. An electronic search was conducted on PubMed, Elsevier, and CNKI. The focus was on methcathinone and its neuropsychological disorders and physical health complications, specifically in adult offspring.</p><p><strong>Result: </strong>A total of 8 studies met the inclusion criteria, resulting in a dataset of methcathinone on neurobehavioral and cognitive functions. These studies mainly found that prenatal methcathinone exposure in rats led to delayed physical development and induced anxiety-like behavior in offspring, with changes observed in neurobehavioral tests and the concentration of serotonin and dopamine. Furthermore, neurochemical effects were identified, showing dose- and time-dependent increases in extracellular dopamine and serotonin concentrations, and neurotoxic potential towards brain dopamine neurons.</p><p><strong>Conclusion: </strong>This study concludes that methcathinone poses severe risks, including neurotoxicity for users and developmental harm for offspring, necessitating ongoing research to comprehend associated risks and inform public health interventions.</p>","PeriodicalId":10905,"journal":{"name":"Current Neuropharmacology","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/011570159X387589250318041633","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Methcathinone, a synthetic cathinone derivative similar to amphetamine, has transitioned from a 1920s ephedrine precursor and Soviet-era antidepressant to a recreationally used substance since the 1970s-1980s, raising public health concerns due to its addiction potential and neurotoxicity-related health risks.
Objective: This review comprehensively analyzes methcathinone's impact on adult offspring, synthesizing recent advancements and critiquing literature to pinpoint key findings, challenges, and future research directions.
Method: The systematic review adhered to PRISMA guidelines and encompassed case series, prospective and retrospective studies, as well as short communications published in English. An electronic search was conducted on PubMed, Elsevier, and CNKI. The focus was on methcathinone and its neuropsychological disorders and physical health complications, specifically in adult offspring.
Result: A total of 8 studies met the inclusion criteria, resulting in a dataset of methcathinone on neurobehavioral and cognitive functions. These studies mainly found that prenatal methcathinone exposure in rats led to delayed physical development and induced anxiety-like behavior in offspring, with changes observed in neurobehavioral tests and the concentration of serotonin and dopamine. Furthermore, neurochemical effects were identified, showing dose- and time-dependent increases in extracellular dopamine and serotonin concentrations, and neurotoxic potential towards brain dopamine neurons.
Conclusion: This study concludes that methcathinone poses severe risks, including neurotoxicity for users and developmental harm for offspring, necessitating ongoing research to comprehend associated risks and inform public health interventions.
期刊介绍:
Current Neuropharmacology aims to provide current, comprehensive/mini reviews and guest edited issues of all areas of neuropharmacology and related matters of neuroscience. The reviews cover the fields of molecular, cellular, and systems/behavioural aspects of neuropharmacology and neuroscience.
The journal serves as a comprehensive, multidisciplinary expert forum for neuropharmacologists and neuroscientists.