{"title":"Astragalosides Promote MH7A Cell Apoptosis by Suppressing WTAP-mediated m6A Methylation of TRAIL-DR4.","authors":"Xiaoya Cui, Linhui Zhang, Huimei Chen, Hui Jiang","doi":"10.2174/0113862073363967250308084008","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Astragaloside (AST), a natural saponin extracted from Astragalus membranaceus (Fisch.) Bunge., has been consistently utilized in the treatment of rheumatoid arthritis (RA). N6-methyladenosine (m6A), the most prevalent modification of mRNA, is associated with the progression of various diseases, including RA. Nonetheless, the effects of AST on m6A modification in RA remain to be elucidated.</p><p><strong>Methods: </strong>The MH7A cell model was established through induction with TNF-α. The effects of AST on the expression levels of WTAP, BAX, BCL2, and TRAIL-DR4 were evaluated utilizing immunofluorescence, RT-qPCR, and Western blot analysis. Furthermore, CCK-8 and flow cytometry were used to assess MH7A cell viability, cell cycle, apoptosis, and proliferation. Then, the m6A modification of TRAIL-DR4 was elucidated via MeRIP-qPCR.</p><p><strong>Results: </strong>The optimal dose administration time was 50 μg/mL at 48 h. AST not only reduced the expression levels of WTAP, BCL2, BAX, TRAIL-DR4, and the m6A modification level of TRAIL-DR4 but also significantly enhanced apoptosis in MH7A cell, while inhibiting cell viability and proliferation. Furthermore, AST was capable of reversing the effect on MH7A cell proliferation and apoptosis induced by WTAP overexpression.</p><p><strong>Conclusion: </strong>This study elucidates the protective role of AST on MH7A cells by attenuating m6A/WTAP-mediated apoptosis, offering novel insights into the mechanisms of AST.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073363967250308084008","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Astragaloside (AST), a natural saponin extracted from Astragalus membranaceus (Fisch.) Bunge., has been consistently utilized in the treatment of rheumatoid arthritis (RA). N6-methyladenosine (m6A), the most prevalent modification of mRNA, is associated with the progression of various diseases, including RA. Nonetheless, the effects of AST on m6A modification in RA remain to be elucidated.
Methods: The MH7A cell model was established through induction with TNF-α. The effects of AST on the expression levels of WTAP, BAX, BCL2, and TRAIL-DR4 were evaluated utilizing immunofluorescence, RT-qPCR, and Western blot analysis. Furthermore, CCK-8 and flow cytometry were used to assess MH7A cell viability, cell cycle, apoptosis, and proliferation. Then, the m6A modification of TRAIL-DR4 was elucidated via MeRIP-qPCR.
Results: The optimal dose administration time was 50 μg/mL at 48 h. AST not only reduced the expression levels of WTAP, BCL2, BAX, TRAIL-DR4, and the m6A modification level of TRAIL-DR4 but also significantly enhanced apoptosis in MH7A cell, while inhibiting cell viability and proliferation. Furthermore, AST was capable of reversing the effect on MH7A cell proliferation and apoptosis induced by WTAP overexpression.
Conclusion: This study elucidates the protective role of AST on MH7A cells by attenuating m6A/WTAP-mediated apoptosis, offering novel insights into the mechanisms of AST.
期刊介绍:
Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal:
Target identification and validation
Assay design, development, miniaturization and comparison
High throughput/high content/in silico screening and associated technologies
Label-free detection technologies and applications
Stem cell technologies
Biomarkers
ADMET/PK/PD methodologies and screening
Probe discovery and development, hit to lead optimization
Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries)
Chemical library design and chemical diversity
Chemo/bio-informatics, data mining
Compound management
Pharmacognosy
Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products)
Natural Product Analytical Studies
Bipharmaceutical studies of Natural products
Drug repurposing
Data management and statistical analysis
Laboratory automation, robotics, microfluidics, signal detection technologies
Current & Future Institutional Research Profile
Technology transfer, legal and licensing issues
Patents.