{"title":"A SuperLearner approach for predicting diabetic kidney disease upon the initial diagnosis of T2DM in hospital.","authors":"Xiaomeng Lin, Chao Liu, Huaiyu Wang, Xiaohui Fan, Linfeng Li, Jiming Xu, Changlin Li, Yao Wang, Xudong Cai, Xin Peng","doi":"10.1186/s12911-025-02977-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Diabetic kidney disease (DKD) is a serious complication of diabetes mellitus (DM), with patients typically remaining asymptomatic until reaching an advanced stage. We aimed to develop and validate a predictive model for DKD in patients with an initial diagnosis of type 2 diabetes mellitus (T2DM) using real-world data.</p><p><strong>Methods: </strong>We retrospectively examined data from 3,291 patients (1740 men, 1551 women) newly diagnosed with T2DM at Ningbo Municipal Hospital of Traditional Chinese Medicine (2011-2023). The dataset was randomly divided into training and validation cohorts. Forty-six readily available medical characteristics at initial diagnosis of T2DM from the electronic medical records were used to develop prediction models based on linear, non-linear, and SuperLearner approaches. Model performance was evaluated using the area under the curve (AUC). SHapley Additive exPlanation (SHAP) was used to interpret the best-performing models.</p><p><strong>Results: </strong>Among 3291 participants, 563 (17.1%) were diagnosed with DKD during median follow-up of 2.53 years. The SuperLearner model exhibited the highest AUC (0.7138, 95% confidence interval: [0.673, 0.7546]) for the holdout internal validation set in predicting any DKD stage. Top-ranked features were WBC_Cnt*, Neut_Cnt, Hct, and Hb. High WBC_Cnt, low Neut_Cnt, high Hct, and low Hb levels were associated with an increased risk of DKD.</p><p><strong>Conclusions: </strong>We developed and validated a DKD risk prediction model for patients with newly diagnosed T2DM. Using routinely available clinical measurements, the SuperLearner model could predict DKD during hospital visits. Prediction accuracy and SHAP-based model interpretability may help improve early detection, targeted interventions, and prognosis of patients with DM.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"25 1","pages":"148"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11948915/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-025-02977-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Diabetic kidney disease (DKD) is a serious complication of diabetes mellitus (DM), with patients typically remaining asymptomatic until reaching an advanced stage. We aimed to develop and validate a predictive model for DKD in patients with an initial diagnosis of type 2 diabetes mellitus (T2DM) using real-world data.
Methods: We retrospectively examined data from 3,291 patients (1740 men, 1551 women) newly diagnosed with T2DM at Ningbo Municipal Hospital of Traditional Chinese Medicine (2011-2023). The dataset was randomly divided into training and validation cohorts. Forty-six readily available medical characteristics at initial diagnosis of T2DM from the electronic medical records were used to develop prediction models based on linear, non-linear, and SuperLearner approaches. Model performance was evaluated using the area under the curve (AUC). SHapley Additive exPlanation (SHAP) was used to interpret the best-performing models.
Results: Among 3291 participants, 563 (17.1%) were diagnosed with DKD during median follow-up of 2.53 years. The SuperLearner model exhibited the highest AUC (0.7138, 95% confidence interval: [0.673, 0.7546]) for the holdout internal validation set in predicting any DKD stage. Top-ranked features were WBC_Cnt*, Neut_Cnt, Hct, and Hb. High WBC_Cnt, low Neut_Cnt, high Hct, and low Hb levels were associated with an increased risk of DKD.
Conclusions: We developed and validated a DKD risk prediction model for patients with newly diagnosed T2DM. Using routinely available clinical measurements, the SuperLearner model could predict DKD during hospital visits. Prediction accuracy and SHAP-based model interpretability may help improve early detection, targeted interventions, and prognosis of patients with DM.
期刊介绍:
BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.