Muhammad Tahir Ul Qamar, Kinza Fatima, Muhammad Junaid Rao, Qian Tang, Muhammad Sadaqat, Baopeng Ding, Ling-Ling Chen, Xi-Tong Zhu
{"title":"Comparative genomics profiling of Citrus species reveals the diversity and disease responsiveness of the GLP pangenes family.","authors":"Muhammad Tahir Ul Qamar, Kinza Fatima, Muhammad Junaid Rao, Qian Tang, Muhammad Sadaqat, Baopeng Ding, Ling-Ling Chen, Xi-Tong Zhu","doi":"10.1186/s12870-025-06397-x","DOIUrl":null,"url":null,"abstract":"<p><p>Citrus is an important nutritional fruit globally; however, its yield is affected by various stresses. This study presents the draft pangenome of Citrus, developed using 11 species to examine their genetic diversity and identify members of the germin-like proteins (GLPs) gene family involved in disease responsiveness. The developed sequence-based pangenome contains 954 Mb sequence and 74,755 genes. The comparative genomics analysis revealed the presence-absence variations (PAVs) among the Citrus genomes and species-specific protein-coding genes. Gene-based pangenome analysis revealed 4,936 new genes missing in the reference genome and highlighted the core and shell genes with putative functions in stress regulation. The pangenome-wide identification of GLP gene family members indicated the intraspecies diversity among the members across 11 genomes by analyzing their gene structure, motifs, and chromosomal distribution patterns. The synteny and evolutionary constraints analyses of Citrus GLPs provide detailed evidence of their evolutionary conservation and divergence. Further, the interaction, functional enrichment, and promoter analysis revealed their involvement in abiotic-, biotic-stress, signaling, and development-related pathways. The expression patterns of C. sinensis GLPs were studied in Huanglongbing (HLB) and Citrus canker disease. Several genes including CsGLPs1-2 and CsGLPs8-4 showed changes in expression patterns under both disease conditions. The qRT-PCR analysis revealed that these two genes were highly expressed in leaves infected with HLB disease across seven HLB-tolerant and susceptible citrus species. This Citrus pangenome and pangenes family study offers a comprehensive resource and new insights into the structural and functional diversity, identifying candidate genes that are important for future research to understand the stress-responsive mechanisms in Citrus.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"25 1","pages":"388"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11948695/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-025-06397-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Citrus is an important nutritional fruit globally; however, its yield is affected by various stresses. This study presents the draft pangenome of Citrus, developed using 11 species to examine their genetic diversity and identify members of the germin-like proteins (GLPs) gene family involved in disease responsiveness. The developed sequence-based pangenome contains 954 Mb sequence and 74,755 genes. The comparative genomics analysis revealed the presence-absence variations (PAVs) among the Citrus genomes and species-specific protein-coding genes. Gene-based pangenome analysis revealed 4,936 new genes missing in the reference genome and highlighted the core and shell genes with putative functions in stress regulation. The pangenome-wide identification of GLP gene family members indicated the intraspecies diversity among the members across 11 genomes by analyzing their gene structure, motifs, and chromosomal distribution patterns. The synteny and evolutionary constraints analyses of Citrus GLPs provide detailed evidence of their evolutionary conservation and divergence. Further, the interaction, functional enrichment, and promoter analysis revealed their involvement in abiotic-, biotic-stress, signaling, and development-related pathways. The expression patterns of C. sinensis GLPs were studied in Huanglongbing (HLB) and Citrus canker disease. Several genes including CsGLPs1-2 and CsGLPs8-4 showed changes in expression patterns under both disease conditions. The qRT-PCR analysis revealed that these two genes were highly expressed in leaves infected with HLB disease across seven HLB-tolerant and susceptible citrus species. This Citrus pangenome and pangenes family study offers a comprehensive resource and new insights into the structural and functional diversity, identifying candidate genes that are important for future research to understand the stress-responsive mechanisms in Citrus.
期刊介绍:
BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.