Multimodal SARS-CoV-2 interactome sketches the virus-host spatial organization.

IF 5.2 1区 生物学 Q1 BIOLOGY
Guillaume Dugied, Estelle Mn Laurent, Mikaël Attia, Jean-Pascal Gimeno, Kamel Bachiri, Payman Samavarchi-Tehrani, Flora Donati, Yannis Rahou, Sandie Munier, Faustine Amara, Mélanie Dos Santos, Nicolas Soler, Stevenn Volant, Natalia Pietrosemoli, Anne-Claude Gingras, Georgios A Pavlopoulos, Sylvie van der Werf, Pascal Falter-Braun, Patrick Aloy, Yves Jacob, Anastassia Komarova, Yorgos Sofianatos, Etienne Coyaud, Caroline Demeret
{"title":"Multimodal SARS-CoV-2 interactome sketches the virus-host spatial organization.","authors":"Guillaume Dugied, Estelle Mn Laurent, Mikaël Attia, Jean-Pascal Gimeno, Kamel Bachiri, Payman Samavarchi-Tehrani, Flora Donati, Yannis Rahou, Sandie Munier, Faustine Amara, Mélanie Dos Santos, Nicolas Soler, Stevenn Volant, Natalia Pietrosemoli, Anne-Claude Gingras, Georgios A Pavlopoulos, Sylvie van der Werf, Pascal Falter-Braun, Patrick Aloy, Yves Jacob, Anastassia Komarova, Yorgos Sofianatos, Etienne Coyaud, Caroline Demeret","doi":"10.1038/s42003-025-07933-z","DOIUrl":null,"url":null,"abstract":"<p><p>An accurate spatial representation of protein-protein interaction networks is needed to achieve a realistic and biologically relevant representation of interactomes. Here, we leveraged the spatial information included in Proximity-Dependent Biotin Identification (BioID) interactomes of SARS-CoV-2 proteins to calculate weighted distances and model the organization of the SARS-CoV-2-human interactome in three dimensions (3D) within a cell-like volume. Cell regions with viral occupancy were highlighted, along with the coordination of viral proteins exploiting the cellular machinery. Profiling physical intra-virus and virus-host contacts enabled us to demonstrate both the accuracy and the predictive value of our 3D map for direct interactions, meaning that proteins in closer proximity tend to interact physically. Several functionally important virus-host complexes were detected, and robust structural models were obtained, opening the way to structure-directed drug discovery screens. This PPI discovery pipeline approach brings us closer to a realistic spatial representation of interactomes, which, when applied to viruses or other pathogens, can provide significant information for infection. Thus, it represents a promising tool for coping with emerging infectious diseases.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"501"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11947133/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-07933-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

An accurate spatial representation of protein-protein interaction networks is needed to achieve a realistic and biologically relevant representation of interactomes. Here, we leveraged the spatial information included in Proximity-Dependent Biotin Identification (BioID) interactomes of SARS-CoV-2 proteins to calculate weighted distances and model the organization of the SARS-CoV-2-human interactome in three dimensions (3D) within a cell-like volume. Cell regions with viral occupancy were highlighted, along with the coordination of viral proteins exploiting the cellular machinery. Profiling physical intra-virus and virus-host contacts enabled us to demonstrate both the accuracy and the predictive value of our 3D map for direct interactions, meaning that proteins in closer proximity tend to interact physically. Several functionally important virus-host complexes were detected, and robust structural models were obtained, opening the way to structure-directed drug discovery screens. This PPI discovery pipeline approach brings us closer to a realistic spatial representation of interactomes, which, when applied to viruses or other pathogens, can provide significant information for infection. Thus, it represents a promising tool for coping with emerging infectious diseases.

多模态SARS-CoV-2相互作用组描绘了病毒-宿主的空间组织。
蛋白质-蛋白质相互作用网络的精确空间表示需要实现相互作用组的现实和生物学相关表示。在这里,我们利用SARS-CoV-2蛋白的邻近依赖生物素识别(BioID)相互作用组中包含的空间信息来计算加权距离,并在细胞样体积内三维(3D)模拟SARS-CoV-2-人类相互作用组的组织。突出显示了病毒占据的细胞区域,以及病毒蛋白利用细胞机制的协调。分析病毒内部和病毒与宿主的物理接触使我们能够证明我们的3D地图对直接相互作用的准确性和预测价值,这意味着距离更近的蛋白质倾向于物理相互作用。检测到几个功能重要的病毒-宿主复合物,并获得了稳健的结构模型,为结构导向的药物发现筛选开辟了道路。这种PPI发现管道方法使我们更接近相互作用组的现实空间表示,当应用于病毒或其他病原体时,可以为感染提供重要信息。因此,它是对付新出现的传染病的一个很有前途的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信