{"title":"Revealing morphological fingerprints in perinatal brains using quasi-conformal mapping: occurrence and neurodevelopmental implications.","authors":"Ying Wang, Boyang Wang, Dalin Zhu, Weihao Zheng, Yucen Sheng","doi":"10.1007/s11682-025-00998-8","DOIUrl":null,"url":null,"abstract":"<p><p>The morphological fingerprint in the brain is capable of identifying the uniqueness of an individual. However, whether such individual patterns are present in perinatal brains, and which morphological attributes or cortical regions better characterize the individual differences of neonates remain unclear. In this study, we proposed a deep learning framework that projected three-dimensional spherical meshes of three morphological features (i.e., cortical thickness, mean curvature, and sulcal depth) onto two-dimensional planes through quasi-conformal mapping, and employed the ResNet18 and contrastive learning for individual identification. We used the cross-sectional structural MRI data of 461 infants, incorporating with data augmentation, to train the model and fine-tuned the parameters based on 41 infants who had longitudinal scans. The model was validated on a fold of 20 longitudinal scanned infant data, and remarkable Top1 and Top5 accuracies of 85.90% and 92.20% were achieved, respectively. The sensorimotor and visual cortices were recognized as the most contributive regions in individual identification. Moreover, morphological fingerprints successfully predicted the long-term development of cognition and behavior. Furthermore, the folding morphology demonstrated greater discriminative capability than the cortical thickness. These findings provided evidence for the emergence of morphological fingerprints in the brain at the beginning of the third trimester, which may hold promising implications for understanding the formation of individual uniqueness, and predicting long-term neurodevelopmental risks in the brain during early development.</p>","PeriodicalId":9192,"journal":{"name":"Brain Imaging and Behavior","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Imaging and Behavior","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11682-025-00998-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
The morphological fingerprint in the brain is capable of identifying the uniqueness of an individual. However, whether such individual patterns are present in perinatal brains, and which morphological attributes or cortical regions better characterize the individual differences of neonates remain unclear. In this study, we proposed a deep learning framework that projected three-dimensional spherical meshes of three morphological features (i.e., cortical thickness, mean curvature, and sulcal depth) onto two-dimensional planes through quasi-conformal mapping, and employed the ResNet18 and contrastive learning for individual identification. We used the cross-sectional structural MRI data of 461 infants, incorporating with data augmentation, to train the model and fine-tuned the parameters based on 41 infants who had longitudinal scans. The model was validated on a fold of 20 longitudinal scanned infant data, and remarkable Top1 and Top5 accuracies of 85.90% and 92.20% were achieved, respectively. The sensorimotor and visual cortices were recognized as the most contributive regions in individual identification. Moreover, morphological fingerprints successfully predicted the long-term development of cognition and behavior. Furthermore, the folding morphology demonstrated greater discriminative capability than the cortical thickness. These findings provided evidence for the emergence of morphological fingerprints in the brain at the beginning of the third trimester, which may hold promising implications for understanding the formation of individual uniqueness, and predicting long-term neurodevelopmental risks in the brain during early development.
期刊介绍:
Brain Imaging and Behavior is a bi-monthly, peer-reviewed journal, that publishes clinically relevant research using neuroimaging approaches to enhance our understanding of disorders of higher brain function. The journal is targeted at clinicians and researchers in fields concerned with human brain-behavior relationships, such as neuropsychology, psychiatry, neurology, neurosurgery, rehabilitation, and cognitive neuroscience.