Socioeconomic disparities in mobility behavior during the COVID-19 pandemic in developing countries.

IF 3 2区 计算机科学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
EPJ Data Science Pub Date : 2025-01-01 Epub Date: 2025-03-24 DOI:10.1140/epjds/s13688-025-00532-2
Lorenzo Lucchini, Ollin D Langle-Chimal, Lorenzo Candeago, Lucio Melito, Alex Chunet, Aleister Montfort, Bruno Lepri, Nancy Lozano-Gracia, Samuel P Fraiberger
{"title":"Socioeconomic disparities in mobility behavior during the COVID-19 pandemic in developing countries.","authors":"Lorenzo Lucchini, Ollin D Langle-Chimal, Lorenzo Candeago, Lucio Melito, Alex Chunet, Aleister Montfort, Bruno Lepri, Nancy Lozano-Gracia, Samuel P Fraiberger","doi":"10.1140/epjds/s13688-025-00532-2","DOIUrl":null,"url":null,"abstract":"<p><p>Mobile phone data have played a key role in quantifying human mobility during the COVID-19 pandemic. Existing studies on mobility patterns have primarily focused on regional aggregates in high-income countries, obfuscating the accentuated impact of the pandemic on the most vulnerable populations. Leveraging geolocation data from mobile-phone users and population census for 6 middle-income countries across 3 continents between March and December 2020, we uncovered common disparities in the behavioral response to the pandemic across socioeconomic groups. Users living in low-wealth neighborhoods were less likely to respond by self-isolating, relocating to rural areas, or refraining from commuting to work. The gap in the behavioral responses between socioeconomic groups persisted during the entire observation period. Among users living in low-wealth neighborhoods, those who commute to work in high-wealth neighborhoods pre-pandemic were particularly at risk of experiencing economic stress, facing both the reduction in economic activity in the high-wealth neighborhood and being more likely to be affected by public transport closures due to their longer commute distances. While confinement policies were predominantly country-wide, these results suggest that, when data to identify vulnerable individuals are not readily available, GPS-based analytics could help design targeted place-based policies to aid the most vulnerable.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1140/epjds/s13688-025-00532-2.</p>","PeriodicalId":11887,"journal":{"name":"EPJ Data Science","volume":"14 1","pages":"25"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11933202/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Data Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1140/epjds/s13688-025-00532-2","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Mobile phone data have played a key role in quantifying human mobility during the COVID-19 pandemic. Existing studies on mobility patterns have primarily focused on regional aggregates in high-income countries, obfuscating the accentuated impact of the pandemic on the most vulnerable populations. Leveraging geolocation data from mobile-phone users and population census for 6 middle-income countries across 3 continents between March and December 2020, we uncovered common disparities in the behavioral response to the pandemic across socioeconomic groups. Users living in low-wealth neighborhoods were less likely to respond by self-isolating, relocating to rural areas, or refraining from commuting to work. The gap in the behavioral responses between socioeconomic groups persisted during the entire observation period. Among users living in low-wealth neighborhoods, those who commute to work in high-wealth neighborhoods pre-pandemic were particularly at risk of experiencing economic stress, facing both the reduction in economic activity in the high-wealth neighborhood and being more likely to be affected by public transport closures due to their longer commute distances. While confinement policies were predominantly country-wide, these results suggest that, when data to identify vulnerable individuals are not readily available, GPS-based analytics could help design targeted place-based policies to aid the most vulnerable.

Supplementary information: The online version contains supplementary material available at 10.1140/epjds/s13688-025-00532-2.

求助全文
约1分钟内获得全文 求助全文
来源期刊
EPJ Data Science
EPJ Data Science MATHEMATICS, INTERDISCIPLINARY APPLICATIONS -
CiteScore
6.10
自引率
5.60%
发文量
53
审稿时长
13 weeks
期刊介绍: EPJ Data Science covers a broad range of research areas and applications and particularly encourages contributions from techno-socio-economic systems, where it comprises those research lines that now regard the digital “tracks” of human beings as first-order objects for scientific investigation. Topics include, but are not limited to, human behavior, social interaction (including animal societies), economic and financial systems, management and business networks, socio-technical infrastructure, health and environmental systems, the science of science, as well as general risk and crisis scenario forecasting up to and including policy advice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信