Dynamic Fracture Fixation Plates: A Systematic Review of Evolving Design Approaches.

IF 3 2区 医学 Q3 ENGINEERING, BIOMEDICAL
Connor Huxman, April Armstrong, Gary Updegrove, Gregory S Lewis, Jared Butler
{"title":"Dynamic Fracture Fixation Plates: A Systematic Review of Evolving Design Approaches.","authors":"Connor Huxman, April Armstrong, Gary Updegrove, Gregory S Lewis, Jared Butler","doi":"10.1007/s10439-025-03714-1","DOIUrl":null,"url":null,"abstract":"<p><p>Fracture fixation with standard locked plates can suppress interfragmentary motion beneficial for secondary bone healing. To address this limitation, dynamic fracture fixation plates have been developed which seek to maintain bending and torsional rigidity while providing controlled axial micromotion. This article provides a comprehensive systematic review of the history and current state of proposed dynamic plating technologies to better inform future development. 59 records (51 articles, 8 patents) describing 26 unique dynamic plating devices were identified across three literature and patent databases using PRISMA review guidelines. Concepts were grouped into one of 9 engineering approach categories, including plates that incorporate sliding mechanisms, elastic inserts, lattice structures, and mechanically compliant flexures, among others. Devices are compared in their technological characteristics, ranges of axial motion, stiffnesses, and levels of development. Despite many dynamic technologies demonstrating good healing results experimentally and clinically, widespread clinical adoption has not occurred. Some explanations for this are provided, including production costs for complex designs and the current co-existence of both rigid and flexible fixation approaches. Overall, dynamic plating offers a promising area of innovation to address the ongoing concerns of non-union rates associated with standard locked plating of long bone fractures.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10439-025-03714-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Fracture fixation with standard locked plates can suppress interfragmentary motion beneficial for secondary bone healing. To address this limitation, dynamic fracture fixation plates have been developed which seek to maintain bending and torsional rigidity while providing controlled axial micromotion. This article provides a comprehensive systematic review of the history and current state of proposed dynamic plating technologies to better inform future development. 59 records (51 articles, 8 patents) describing 26 unique dynamic plating devices were identified across three literature and patent databases using PRISMA review guidelines. Concepts were grouped into one of 9 engineering approach categories, including plates that incorporate sliding mechanisms, elastic inserts, lattice structures, and mechanically compliant flexures, among others. Devices are compared in their technological characteristics, ranges of axial motion, stiffnesses, and levels of development. Despite many dynamic technologies demonstrating good healing results experimentally and clinically, widespread clinical adoption has not occurred. Some explanations for this are provided, including production costs for complex designs and the current co-existence of both rigid and flexible fixation approaches. Overall, dynamic plating offers a promising area of innovation to address the ongoing concerns of non-union rates associated with standard locked plating of long bone fractures.

动态骨折固定钢板:不断发展的设计方法的系统回顾。
用标准锁定钢板固定骨折可抑制骨折块间运动,有利于继发性骨愈合。为了解决这一限制,动态骨折固定板已经被开发出来,它寻求保持弯曲和扭转刚度,同时提供可控的轴向微运动。本文对动态电镀技术的历史和现状进行了全面系统的回顾,以更好地为未来的发展提供信息。使用PRISMA审查指南,从三个文献和专利数据库中确定了59条记录(51篇文章,8项专利),描述了26种独特的动态电镀装置。概念被归为9个工程方法类别之一,包括包含滑动机制的板,弹性插入,晶格结构和机械柔性挠曲等。设备在其技术特点,轴向运动范围,刚度和发展水平进行比较。尽管许多动态技术在实验和临床表现出良好的治疗效果,但尚未得到广泛的临床应用。对此给出了一些解释,包括复杂设计的生产成本以及当前刚性和柔性固定方法的共存。总的来说,动态钢板提供了一个有前景的创新领域,以解决标准锁定钢板治疗长骨骨折的不愈合率问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Biomedical Engineering
Annals of Biomedical Engineering 工程技术-工程:生物医学
CiteScore
7.50
自引率
15.80%
发文量
212
审稿时长
3 months
期刊介绍: Annals of Biomedical Engineering is an official journal of the Biomedical Engineering Society, publishing original articles in the major fields of bioengineering and biomedical engineering. The Annals is an interdisciplinary and international journal with the aim to highlight integrated approaches to the solutions of biological and biomedical problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信